Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 245, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172558

RESUMEN

Materials showing second-order nonlinear transport under time reversal symmetry can be used for Radio Frequency (RF) rectification, but practical application demands room temperature operation and sensitivity to microwatts level RF signals in the ambient. In this study, we demonstrate that BiTeBr exhibits a giant nonlinear response which persists up to 350 K. Through scaling and symmetry analysis, we show that skew scattering is the dominant mechanism. Additionally, the sign of the nonlinear response can be electrically switched by tuning the Fermi energy. Theoretical analysis suggests that the large Rashba spin-orbit interactions (SOI), which gives rise to the chirality of the Bloch electrons, provide the microscopic origin of the observed nonlinear response. Our BiTeBr rectifier is capable of rectifying radiation within the frequency range of 0.2 to 6 gigahertz at room temperature, even at extremely low power levels of -15 dBm, and without the need for external biasing. Our work highlights that materials exhibiting large Rashba SOI have the potential to exhibit nonlinear responses at room temperature, making them promising candidates for harvesting high-frequency and low-power ambient electromagnetic energy.

2.
Phys Rev Lett ; 132(2): 026002, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38277583

RESUMEN

Recent experimental studies unveiled highly unconventional phenomena in the superconducting twisted bilayer graphene (TBG) with ultraflat bands, which cannot be described by the conventional BCS theory. For example, given the small Fermi velocity of the flat bands, the superconducting coherence length predicted by BCS theory is more than 20 times shorter than the measured values. A new theory is needed to understand many of the unconventional properties of flat-band superconductors. In this Letter, we establish a Ginzburg-Landau (GL) theory from a microscopic flat-band Hamiltonian. The GL theory shows how the properties of the physical quantities such as the critical temperature, superconducting coherence length, upper critical field, and superfluid density are governed by the quantum metric of the Bloch states. One key conclusion is that the superconducting coherence length is not determined by the Fermi velocity but by the size of the optimally localized Wannier functions which are limited by the quantum metric. Applying the theory to TBG, we calculated the superconducting coherence length and the upper critical fields. The results match the experimental ones well without fine-tuning of parameters. The established GL theory provides a new and general theoretical framework for understanding flat-band superconductors with the quantum metric.

3.
Adv Mater ; 36(13): e2310249, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38118065

RESUMEN

Magnetic topological states refer to a class of exotic phases in magnetic materials with the non-trivial topological property determined by magnetic spin configurations. An example of such states is the quantum anomalous Hall (QAH) state, which is a zero magnetic field manifestation of the quantum Hall effect. Current research in this direction focuses on QAH insulators with a thickness of less than 10 nm. Here, molecular beam epitaxy (MBE) is employed to synthesize magnetic TI trilayers with a thickness of up to ≈106 nm. It is found that these samples exhibit well-quantized Hall resistance and vanishing longitudinal resistance at zero magnetic field. By varying the magnetic dopants, gate voltages, temperature, and external magnetic fields, the properties of these thick QAH insulators are examined and the robustness of the 3D QAH effect is demonstrated. The realization of the well-quantized 3D QAH effect indicates that the nonchiral side surface states of the thick magnetic TI trilayers are gapped and thus do not affect the QAH quantization. The 3D QAH insulators of hundred-nanometer thickness provide a promising platform for the exploration of fundamental physics, including axion physics and image magnetic monopole, and the advancement of electronic and spintronic devices to circumvent Moore's law.

4.
Nat Commun ; 14(1): 7596, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989754

RESUMEN

An axion insulator is a three-dimensional (3D) topological insulator (TI), in which the bulk maintains the time-reversal symmetry or inversion symmetry but the surface states are gapped by surface magnetization. The axion insulator state has been observed in molecular beam epitaxy (MBE)-grown magnetically doped TI sandwiches and exfoliated intrinsic magnetic TI MnBi2Te4 flakes with an even number layer. All these samples have a thickness of ~ 10 nm, near the 2D-to-3D boundary. The coupling between the top and bottom surface states in thin samples may hinder the observation of quantized topological magnetoelectric response. Here, we employ MBE to synthesize magnetic TI sandwich heterostructures and find that the axion insulator state persists in a 3D sample with a thickness of ~ 106 nm. Our transport results show that the axion insulator state starts to emerge when the thickness of the middle undoped TI layer is greater than ~ 3 nm. The 3D hundred-nanometer-thick axion insulator provides a promising platform for the exploration of the topological magnetoelectric effect and other emergent magnetic topological states, such as the high-order TI phase.

5.
Phys Rev Lett ; 131(1): 016001, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478419

RESUMEN

In this Letter, we study superconducting moiré homobilayer transition metal dichalcogenides where the Ising spin-orbit coupling (SOC) is much larger than the moiré bandwidth. We call such noncentrosymmetric superconductors, moiré Ising superconductors. Because of the large Ising SOC, the depairing effect caused by the Zeeman field is negligible and the in-plane upper critical field (B_{c2}) is determined by the orbital effects. This allows us to study the effect of large orbital fields. Interestingly, when the applied in-plane field is larger than the conventional orbital B_{c2}, a finite-momentum pairing phase would appear which we call the orbital Fulde-Ferrell (FF) state. In this state, the Cooper pairs acquire a net momentum of 2q_{B}, where 2q_{B}=eBd is the momentum shift caused by the magnetic field B and d denotes the layer separation. This orbital field-driven FF state is different from the conventional FF state driven by Zeeman effects in Rashba superconductors. Remarkably, we predict that the FF pairing would result in a giant superconducting diode effect under electric gating when layer asymmetry is induced. An upturn of the B_{c2} as the temperature is lowered, coupled with the giant superconducting diode effect, would allow the detection of the orbital FF state.

6.
Phys Rev Lett ; 130(26): 266003, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37450809

RESUMEN

Recently, the Josephson diode effect (JDE), in which the superconducting critical current magnitudes differ when the currents flow in opposite directions, has attracted great interest. In particular, it was demonstrated that gate-defined Josephson junctions based on magic-angle twisted bilayer graphene showed a strong nonreciprocal effect when the weak-link region is gated to a correlated insulating state at half filling (two holes per moiré cell). However, the mechanism behind such a phenomenon is not yet understood. In this Letter, we show that the interaction-driven valley polarization, together with the trigonal warping of the Fermi surface, induce the JDE. The valley polarization, which lifts the degeneracy of the states in the two valleys, induces a relative phase difference between the first and the second harmonics of the supercurrent and results in the JDE. We further show that the nontrivial current phase relation, which is responsible for the JDE, also generates the asymmetric Shapiro steps.


Asunto(s)
Grafito , Ambiente
7.
Nat Commun ; 14(1): 2396, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100775

RESUMEN

The coexistence of gate-tunable superconducting, magnetic and topological orders in magic-angle twisted bilayer graphene provides opportunities for the creation of hybrid Josephson junctions. Here we report the fabrication of gate-defined symmetry-broken Josephson junctions in magic-angle twisted bilayer graphene, where the weak link is gate-tuned close to the correlated insulator state with a moiré filling factor of υ = -2. We observe a phase-shifted and asymmetric Fraunhofer pattern with a pronounced magnetic hysteresis. Our theoretical calculations of the junction weak link-with valley polarization and orbital magnetization-explain most of these unconventional features. The effects persist up to the critical temperature of 3.5 K, with magnetic hysteresis observed below 800 mK. We show how the combination of magnetization and its current-induced magnetization switching allows us to realise a programmable zero-field superconducting diode. Our results represent a major advance towards the creation of future superconducting quantum electronic devices.

8.
Phys Rev Lett ; 128(2): 026402, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35089739

RESUMEN

Moiré heterobilayer transition metal dichalcogenides (TMDs) emerge as an ideal system for simulating the single-band Hubbard model and interesting correlated phases have been observed in these systems. Nevertheless, the moiré bands in heterobilayer TMDs were believed to be topologically trivial. Recently, it was reported that both a quantum valley Hall insulating state at filling ν=2 (two holes per moiré unit cell) and a valley-polarized quantum anomalous Hall state at filling ν=1 were observed in AB stacked moiré MoTe_{2}/WSe_{2} heterobilayers. However, how the topologically nontrivial states emerge is not known. In this Letter, we propose that the pseudomagnetic fields induced by lattice relaxation in moiré MoTe_{2}/WSe_{2} heterobilayers could naturally give rise to moiré bands with finite Chern numbers. We show that a time-reversal invariant quantum valley Hall insulator is formed at full filling ν=2, when two moiré bands with opposite Chern numbers are filled. At half filling ν=1, the Coulomb interaction lifts the valley degeneracy and results in a valley-polarized quantum anomalous Hall state, as observed in the experiment. Our theory identifies a new way to achieve topologically nontrivial states in heterobilayer TMD materials.

9.
Nat Commun ; 12(1): 3064, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031382

RESUMEN

Recently, it was pointed out that all chiral crystals with spin-orbit coupling (SOC) can be Kramers Weyl semimetals (KWSs) which possess Weyl points pinned at time-reversal invariant momenta. In this work, we show that all achiral non-centrosymmetric materials with SOC can be a new class of topological materials, which we term Kramers nodal line metals (KNLMs). In KNLMs, there are doubly degenerate lines, which we call Kramers nodal lines (KNLs), connecting time-reversal invariant momenta. The KNLs create two types of Fermi surfaces, namely, the spindle torus type and the octdong type. Interestingly, all the electrons on octdong Fermi surfaces are described by two-dimensional massless Dirac Hamiltonians. These materials support quantized optical conductance in thin films. We further show that KNLMs can be regarded as parent states of KWSs. Therefore, we conclude that all non-centrosymmetric metals with SOC are topological, as they can be either KWSs or KNLMs.

10.
Phys Rev Lett ; 125(10): 107001, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955301

RESUMEN

Recent experiments reported gate-induced superconductivity in the monolayer 1T^{'}-WTe_{2} which is a two-dimensional topological insulator in its normal state. The in-plane upper critical field B_{c2} is found to exceed the conventional Pauli paramagnetic limit B_{p} by one to three times. The enhancement cannot be explained by conventional spin-orbit coupling which vanishes due to inversion symmetry. In this Letter, we unveil some distinctive superconducting properties of centrosymmetric 1T^{'}-WTe_{2} which arise from the coupling of spin, momentum and band parity degrees of freedom. As a result of this spin-orbit-parity coupling (SOPC): (i) there is a first-order superconductor-metal transition at B_{c2} that is much higher than the Pauli paramagnetic limit B_{p}, (ii) spin-susceptibility is anisotropic with respect to in-plane directions and can result in possible anisotropic B_{c2}, and (iii) the B_{c2} exhibits a strong gate dependence as the spin-orbit-parity coupling is significant only near the topological band crossing points. The importance of SOPC on the topologically nontrivial inter-orbital pairing phase is also discussed. Our theory generally applies to centrosymmetric materials with topological band inversions.

11.
Nat Commun ; 11(1): 1650, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246024

RESUMEN

Recently, quantum anomalous Hall effect with spontaneous ferromagnetism was observed in twisted bilayer graphenes (TBG) near 3/4 filling. Importantly, it was observed that an extremely small current can switch the direction of the magnetization. This offers the prospect of realizing low energy dissipation magnetic memories. However, the mechanism of the current-driven magnetization switching is poorly understood as the charge currents in graphenes are generally believed to be non-magnetic. In this work, we demonstrate that in TBG, the twisting and substrate induced symmetry breaking allow an out of plane orbital magnetization to be generated by a charge current. Moreover, the large Berry curvatures of the flat bands give the Bloch electrons large orbital magnetic moments so that a small current can generate a large orbital magnetization. We further demonstrate how the charge current can switch the magnetization of the ferromagnetic TBG near 3/4 filling as observed in the experiments.

12.
Phys Rev Lett ; 122(16): 167001, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31075008

RESUMEN

In our previous work [Phys. Rev. Lett. 121, 046401 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.046401], we found a quantum spin liquid phase with a spinon Fermi surface in the two dimensional spin-1/2 Heisenberg model with four-spin ring exchange on a triangular lattice. In this work we dope the spinon Fermi surface phase by studying the t-J model with four-spin ring exchange. We perform density matrix renormalization group calculations on four-leg cylinders of a triangular lattice and find that the dominant pair correlation function is that of a pair density wave; i.e., it is oscillatory while decaying with distance with a power law. The doping dependence of the period is studied. This is the first example where a pair density wave is the dominant pairing in a generic strongly interacting system where the pair density wave cannot be explained as a composite order and no special symmetry is required.

13.
Phys Rev Lett ; 121(9): 096802, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30230908

RESUMEN

Magnetism in topological insulators (TIs) opens a topologically nontrivial exchange band gap, providing an exciting platform for manipulating the topological order through an external magnetic field. Here, we show that the surface of an antiferromagnetic thin film can magnetize the top and the bottom TI surface states through interfacial couplings. During the magnetization reversal, intermediate spin configurations are ascribed from unsynchronized magnetic switchings. This unsynchronized switching develops antisymmetric magnetoresistance spikes during magnetization reversals, which might originate from a series of topological transitions. With the high Néel ordering temperature provided by the antiferromagnetic layers, the signature of the induced topological transition persists up to ∼90 K.

14.
Phys Rev Lett ; 121(4): 046401, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30095934

RESUMEN

1T-TaS_{2} is a cluster Mott insulator on the triangular lattice with 13 Ta atoms forming a star of David cluster as the unit cell. We derive a two-dimensional XXZ spin-1/2 model with a four-spin ring exchange term to describe the effective low energy physics of a monolayer 1T-TaS_{2}, where the effective spin-1/2 degrees of freedom arises from the Kramers degenerate spin-orbital states on each star of David. A large scale density matrix renormalization group simulation is further performed on this effective model and we find a gapless spin liquid phase with a spinon Fermi surface at a moderate to large strength region of the four-spin ring exchange term. All peaks in the static spin structure factor are found to be located on the "2k_{F}" surface of a half-filled spinon on the triangular lattice. Experiments to detect the spinon Fermi surface phase in 1T-TaS_{2} are discussed.

15.
Proc Natl Acad Sci U S A ; 114(27): 6996-7000, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28634296

RESUMEN

1T-TaS2 is unique among transition metal dichalcogenides in that it is understood to be a correlation-driven insulator, where the unpaired electron in a 13-site cluster experiences enough correlation to form a Mott insulator. We argue, based on existing data, that this well-known material should be considered as a quantum spin liquid, either a fully gapped [Formula: see text] spin liquid or a Dirac spin liquid. We discuss the exotic states that emerge upon doping and propose further experimental probes.

16.
Sci Rep ; 6: 32508, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27587000

RESUMEN

In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3.

17.
Science ; 350(6266): 1353-7, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26563134

RESUMEN

The Zeeman effect, which is usually detrimental to superconductivity, can be strongly protective when an effective Zeeman field from intrinsic spin-orbit coupling locks the spins of Cooper pairs in a direction orthogonal to an external magnetic field. We performed magnetotransport experiments with ionic-gated molybdenum disulfide transistors, in which gating prepared individual superconducting states with different carrier dopings, and measured an in-plane critical field B(c2) far beyond the Pauli paramagnetic limit, consistent with Zeeman-protected superconductivity. The gating-enhanced B(c2) is more than an order of magnitude larger than it is in the bulk superconducting phases, where the effective Zeeman field is weakened by interlayer coupling. Our study provides experimental evidence of an Ising superconductor, in which spins of the pairing electrons are strongly pinned by an effective Zeeman field.

18.
Phys Rev Lett ; 113(9): 097001, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25216001

RESUMEN

Molybdenum disulphide (MoS2) has attracted much interest in recent years due to its potential applications in a new generation of electronic devices. Recently, it was shown that thin films of MoS2 can become superconducting with a highest Tc of 10 K when the material is heavily gated to the conducting regime. In this work, using the group theoretical approach, we determine the possible pairing symmetries of heavily gated MoS2. Depending on the electron-electron interactions and Rashba spin-orbit coupling, the material can support an exotic spin-singlet p+ip-wavelike, an exotic spin-triplet s-wavelike, and a conventional spin-triplet p-wave pairing phase. Importantly, the exotic spin-singlet p+ip-wave phase is a topological superconducting phase that breaks time-reversal symmetry spontaneously and possesses nonzero Chern numbers where the Chern number determines the number of branches of chiral Majorana edge states.

19.
Phys Rev Lett ; 112(3): 037001, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24484161

RESUMEN

In this work, we find that Majorana fermions induce selective equal spin Andreev reflections (SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as counterpropagating holes with the same spin. The spin polarization direction of the electrons of this Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite spin polarization are always reflected as electrons with unchanged spin. As a result, the charge current in the lead is spin polarized. Therefore, a topological superconductor which supports Majorana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic leads. We point out that SESARs can also be used to detect Majorana fermions in topological superconductors.

20.
Nat Commun ; 5: 3232, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24492649

RESUMEN

Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...