Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 7(11)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35674133

RESUMEN

Epileptic seizures are common sequelae of stroke, acute brain injury, and chronic neurodegenerative diseases, including Alzheimer's disease (AD), and cannot be effectively controlled in approximately 40% of patients, necessitating the development of novel therapeutic agents. Activation of the A1 receptor (A1R) by endogenous adenosine is an intrinsic mechanism to self-terminate seizures and protect neurons from excitotoxicity. However, targeting A1R for neurological disorders has been hindered by side effects associated with its broad expression outside the nervous system. Here we aim to target the neural-specific A1R/neurabin/regulator of G protein signaling 4 (A1R/neurabin/RGS4) complex that dictates A1R signaling strength and response outcome in the brain. We developed a peptide that blocks the A1R-neurabin interaction to enhance A1R activity. Intracerebroventricular or i.n. administration of this peptide shows marked protection against kainate-induced seizures and neuronal death. Furthermore, in an AD mouse model with spontaneous seizures, nasal delivery of this blocking peptide reduces epileptic spike frequency. Significantly, the anticonvulsant and neuroprotective effects of this peptide are achieved through enhanced A1R function in response to endogenous adenosine in the brain, thus, avoiding side effects associated with A1R activation in peripheral tissues and organs. Our study informs potentially new anti-seizure therapy applicable to epilepsy and other neurological illness with comorbid seizures.


Asunto(s)
Enfermedad de Alzheimer , Epilepsia , Proteínas RGS , Adenosina , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Humanos , Ratones , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Proteínas RGS/metabolismo , Receptor de Adenosina A1/metabolismo
2.
J Neurosci ; 39(21): 4142-4152, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30886012

RESUMEN

Cannabis sativa alters sensory perception and exhibits potential medicinal benefits. In mammals, cannabinoids activate two canonical receptors, CB1/CB2, as well additional receptors/ion channels whose overall contributions to cannabinoid signaling have yet to be fully assessed. In Caenorhabditis elegans, the endogenous cannabinoid receptor agonist, 2-arachidonoylglycerol (2-AG) activates a CB1 ortholog, NPR-19, to modulate behavior (Oakes et al., 2017). In addition, 2-AG stimulates the NPR-19 independent release of both serotonin (5-HT) and dopamine (DA) from subsets of monoaminergic neurons to modulate locomotory behaviors through a complex monoaminergic signaling pathway involving multiple serotonin and dopamine receptors. 2-AG also inhibits locomotion in remodeled monoamine receptor mutant animals designed to measure the acute release of either 5-HT or DA, confirming the direct effects of 2-AG on monoamine release. 2-AG-dependent locomotory inhibition requires the expression of transient receptor potential vanilloid 1 (TRPV1) and TRPN-like channels in the serotonergic or dopaminergic neurons, respectively, and the acute pharmacological inhibition of the TRPV1-like channel abolishes both 2-AG-dependent 5-HT release and locomotory inhibition, suggesting the 2-AG may activate the channel directly. This study highlights the advantages of identifying and assessing both CB1/CB2-dependent and independent cannabinoid signaling pathways in a genetically tractable, mammalian predictive model, where cannabinoid signaling at the molecular/neuronal levels can be correlated directly with changes in behavior.SIGNIFICANCE STATEMENT This study is focused on assessing CB1/CB2-independent cannabinoid signaling in a genetically tractable, whole-animal model where cannabinoid signaling at the molecular/neuronal levels can be correlated with behavioral change. Caenorhabditis elegans contains a cannabinoid signaling system mediated by a canonical cannabinoid receptor, NPR-19, with orthology to human CB1/CB2 (Oakes et al., 2017). The present study has characterized an NPR-19-independent signaling pathway that involves the cannabinoid-dependent release of both serotonin and dopamine and the expression of distinct TRP-like channels on the monoaminergic neurons. Our work should be of interest to those studying the complexities of CB1/CB2-independent cannabinoid signaling, the role of TRP channels in the modulation of monoaminergic signaling, and the cannabinoid-dependent modulation of behavior.


Asunto(s)
Cannabinoides/farmacología , Dopamina/metabolismo , Serotonina/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Conducta Animal , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Endocannabinoides/farmacología , Glicéridos/farmacología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPV/efectos de los fármacos
3.
Int J Parasitol Drugs Drug Resist ; 8(3): 526-533, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30401619

RESUMEN

The cys-loop superfamily of ligand-gated ion channels are well recognized as important drug targets for many invertebrate specific compounds. With the rise in resistance seen worldwide to existing anthelmintics, novel drug targets must be identified so new treatments can be developed. The acetylcholine-gated chloride channel (ACC) family is a unique family of cholinergic receptors that have been shown, using Caenorhabditis elegans as a model, to have potential as anti-parasitic drug targets. However, there is little known about the function of these receptors in parasitic nematodes. Here, we have identified an acc gene (hco-acc-1) from the sheep parasitic nematode Haemonchus contortus. While similar in sequence to the previously characterized C. elegans ACC-1 receptor, Hco-ACC-1 does not form a functional homomeric channel in Xenopus oocytes. Instead, co-expression of Hco-ACC-1 with a previously characterized subunit Hco-ACC-2 produced a functional heteromeric channel which was 3x more sensitive to acetylcholine compared to the Hco-ACC-2 homomeric channel. We have also found that Hco-ACC-1 can be functionally expressed in C. elegans. Overexpression of both cel-acc-1 and hco-acc-1 in both C. elegans N2 and acc-1 null mutants decreased the time for worms to initiate reversal avoidance to octanol. Moreover, antibodies were generated against the Hco-ACC-1 protein for use in immunolocalization studies. Hco-ACC-1 consistently localized to the anterior half of the pharynx, specifically in pharyngeal muscle tissue in H. contortus. On the other hand, expression of Hco-ACC-1 in C. elegans was restricted to neuronal tissue. Overall, this research has provided new insight into the potential role of ACC receptors in parasitic nematodes.


Asunto(s)
Acetilcolina/farmacología , Canales de Cloruro/metabolismo , Haemonchus/metabolismo , Proteínas del Helminto/metabolismo , Receptores Colinérgicos/metabolismo , Acetilcolina/metabolismo , Animales , Antihelmínticos/metabolismo , Caenorhabditis elegans/genética , Canales de Cloruro/genética , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando , Haemonchus/anatomía & histología , Haemonchus/efectos de los fármacos , Haemonchus/genética , Proteínas del Helminto/genética , Canales Iónicos Activados por Ligandos/genética , Canales Iónicos Activados por Ligandos/metabolismo , Octanoles/farmacología , Oocitos/efectos de los fármacos , Músculos Faríngeos/metabolismo , Receptores Colinérgicos/genética , Xenopus laevis/anatomía & histología , Xenopus laevis/fisiología
4.
J Neurosci ; 37(11): 2859-2869, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28188220

RESUMEN

Cannabis sativa, or marijuana, a popular recreational drug, alters sensory perception and exerts a range of potential medicinal benefits. The present study demonstrates that the endogenous cannabinoid receptor agonists 2-arachidonoylglycerol (2-AG) and anandamide (AEA) activate a canonical cannabinoid receptor in Caenorhabditis elegans and also modulate monoaminergic signaling at multiple levels. 2-AG or AEA inhibit nociception and feeding through a pathway requiring the cannabinoid-like receptor NPR-19. 2-AG or AEA activate NPR-19 directly and cannabinoid-dependent inhibition can be rescued in npr-19-null animals by the expression of a human cannabinoid receptor, CB1, highlighting the orthology of the receptors. Cannabinoids also modulate nociception and locomotion through an NPR-19-independent pathway requiring an α2A-adrenergic-like octopamine (OA) receptor, OCTR-1, and a 5-HT1A-like serotonin (5-HT) receptor, SER-4, that involves a complex interaction among cannabinoid, octopaminergic, and serotonergic signaling. 2-AG activates OCTR-1 directly. In contrast, 2-AG does not activate SER-4 directly, but appears to enhance SER-4-dependent serotonergic signaling by increasing endogenous 5-HT. This study defines a conserved cannabinoid signaling system in C. elegans, demonstrates the cannabinoid-dependent activation of monoaminergic signaling, and highlights the advantages of studying cannabinoid signaling in a genetically tractable whole-animal model.SIGNIFICANCE STATEMENTCannabis sativa, or marijuana, causes euphoria and exerts a wide range of medicinal benefits. For years, cannabinoids have been studied at the cellular level using tissue explants with conflicting results. To better understand cannabinoid signaling, we have used the Caenorhabditis elegans model to examine the effects of cannabinoids on behavior. The present study demonstrates that mammalian cannabinoid receptor ligands activate a conserved cannabinoid signaling system in C. elegans and also modulate monoaminergic signaling, potentially affecting an array of disorders, including anxiety and depression. This study highlights the potential role of cannabinoids in modulating monoaminergic signaling and the advantages of studying cannabinoid signaling in a genetically tractable, whole-animal model.


Asunto(s)
Conducta Animal/fisiología , Monoaminas Biogénicas/metabolismo , Caenorhabditis elegans/fisiología , Endocannabinoides/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Reacción de Prevención/fisiología , Cannabinoides/metabolismo , Conducta Alimentaria/fisiología , Nocicepción/fisiología
5.
J Neurosci ; 33(35): 14107-16, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23986246

RESUMEN

Monoamines and neuropeptides interact to modulate most behaviors. To better understand these interactions, we have defined the roles of tyramine (TA), octopamine, and neuropeptides in the inhibition of aversive behavior in Caenorhabditis elegans. TA abolishes the serotonergic sensitization of aversive behavior mediated by the two nociceptive ASH sensory neurons and requires the expression of the adrenergic-like, Gαq-coupled, TA receptor TYRA-3 on inhibitory monoaminergic and peptidergic neurons. For example, TA inhibition requires Gαq and Gαs signaling in the peptidergic ASI sensory neurons, with an array of ASI neuropeptides activating neuropeptide receptors on additional neurons involved in locomotory decision-making. The ASI neuropeptides required for tyraminergic inhibition are distinct from those required for octopaminergic inhibition, suggesting that individual monoamines stimulate the release of different subsets of ASI neuropeptides. Together, these results demonstrate that a complex humoral mix of monoamines is focused by more local, synaptic, neuropeptide release to modulate nociception and highlight the similarities between the tyraminergic/octopaminergic inhibition of nociception in C. elegans and the noradrenergic inhibition of nociception in mammals that also involves inhibitory peptidergic signaling.


Asunto(s)
Neuropéptidos/metabolismo , Nocicepción , Octopamina/farmacología , Tiramina/farmacología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Locomoción , Receptores de Catecolaminas/antagonistas & inhibidores , Receptores de Catecolaminas/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Transmisión Sináptica
6.
Mol Biochem Parasitol ; 183(1): 1-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22343182

RESUMEN

This review is designed to summarize the information on monoamine-dependent paralysis as a target for anthelmintic development, examine the conservation of monoamine receptors in the genomes of both free-living and parasitic nematodes, and highlight the utility of the Caenorhabditis elegans model system for dissecting the monoaminergic modulation of locomotory decision-making.


Asunto(s)
Aminas/farmacología , Antinematodos/farmacología , Descubrimiento de Drogas , Nematodos/efectos de los fármacos , Nematodos/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Antinematodos/uso terapéutico , Proteínas del Helminto/agonistas , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Humanos , Nematodos/genética , Infecciones por Nematodos/tratamiento farmacológico , Filogeografía , Receptores de Superficie Celular/agonistas , Receptores de Superficie Celular/genética , Transducción de Señal
7.
PLoS One ; 6(7): e21897, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21814562

RESUMEN

Nutritional state often modulates olfaction and in Caenorhabditis elegans food stimulates aversive responses mediated by the nociceptive ASH sensory neurons. In the present study, we have characterized the role of key serotonergic neurons that differentially modulate aversive behavior in response to changing nutritional status. The serotonergic NSM and ADF neurons play antagonistic roles in food stimulation. NSM 5-HT activates SER-5 on the ASHs and SER-1 on the RIA interneurons and stimulates aversive responses, suggesting that food-dependent serotonergic stimulation involves local changes in 5-HT levels mediated by extrasynaptic 5-HT receptors. In contrast, ADF 5-HT activates SER-1 on the octopaminergic RIC interneurons to inhibit food-stimulation, suggesting neuron-specific stimulatory and inhibitory roles for SER-1 signaling. Both the NSMs and ADFs express INS-1, an insulin-like peptide, that appears to cell autonomously inhibit serotonergic signaling. Food also modulates directional decisions after reversal is complete, through the same serotonergic neurons and receptors involved in the initiation of reversal, and the decision to continue forward or change direction after reversal is dictated entirely by nutritional state. These results highlight the complexity of the "food signal" and serotonergic signaling in the modulation of sensory-mediated aversive behaviors.


Asunto(s)
Conducta Animal/fisiología , Dieta , Interneuronas/metabolismo , Nociceptores/metabolismo , Células Receptoras Sensoriales/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiología , Insulina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...