Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 160: 213847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657288

RESUMEN

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Colágeno , Combinación de Medicamentos , Células Epiteliales , Hidrogeles , Laminina , Péptidos , Proteoglicanos , Laminina/farmacología , Laminina/química , Hidrogeles/química , Hidrogeles/farmacología , Proteoglicanos/farmacología , Proteoglicanos/química , Colágeno/química , Colágeno/farmacología , Péptidos/farmacología , Péptidos/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/citología , Humanos , Femenino , Técnicas de Cultivo Tridimensional de Células/métodos , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Glándulas Mamarias Humanas/citología , Organoides/efectos de los fármacos , Organoides/citología , Técnicas de Cultivo de Célula/métodos
2.
Mol Cell Proteomics ; 23(3): 100735, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342409

RESUMEN

Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.


Asunto(s)
Desmosomas , Placofilinas , Animales , Perros , Desmosomas/metabolismo , Membrana Celular/metabolismo , Placofilinas/metabolismo , Células de Riñón Canino Madin Darby , Transducción de Señal , Adhesión Celular , Desmoplaquinas/metabolismo
3.
Matrix Biol ; 127: 23-37, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331051

RESUMEN

BACKGROUND: The kidney contains distinct glomerular and tubulointerstitial compartments with diverse cell types and extracellular matrix components. The role of immune cells in glomerular environment is crucial for dampening inflammation and maintaining homeostasis. Macrophages are innate immune cells that are influenced by their tissue microenvironment. However, the multifunctional role of kidney macrophages remains unclear. METHODS: Flow and imaging cytometry were used to determine the relative expression of CD81 and CX3CR1 (C-X3-C motif chemokine receptor 1) in kidney macrophages. Monocyte replenishment was assessed in Cx3cr1CreER X R26-yfp-reporter and shielded chimeric mice. Bulk RNA-sequencing and mass spectrometry-based proteomics were performed on isolated kidney macrophages from wild type and Col4a5-/- (Alport) mice. RNAscope was used to visualize transcripts and macrophage purity in bulk RNA assessed by CIBERSORTx analyses. RESULTS: In wild type mice we identified three distinct kidney macrophage subsets using CD81 and CX3CR1 and these subsets showed dependence on monocyte replenishment. In addition to their immune function, bulk RNA-sequencing of macrophages showed enrichment of biological processes associated with extracellular matrix. Proteomics identified collagen IV and laminins in kidney macrophages from wild type mice whilst other extracellular matrix proteins including cathepsins, ANXA2 and LAMP2 were enriched in Col4a5-/- (Alport) mice. A subset of kidney macrophages co-expressed matrix and macrophage transcripts. CONCLUSIONS: We identified CD81 and CX3CR1 positive kidney macrophage subsets with distinct dependence for monocyte replenishment. Multiomic analysis demonstrated that these cells have diverse functions that underscore the importance of macrophages in kidney health and disease.


Asunto(s)
Enfermedades Renales , Macrófagos , Ratones , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Macrófagos/metabolismo , Riñón/metabolismo , Inflamación/metabolismo , Enfermedades Renales/metabolismo , ARN/metabolismo
4.
STAR Protoc ; 4(4): 102741, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039136

RESUMEN

Basement membranes are specialized extracellular matrices formed by highly insoluble structural proteins and extracellular matrix (ECM)-bound components that provide structural and signaling support to tissues and are dynamic during development. Here, we present a mass spectrometry-based label-free quantitative proteomics protocol to investigate basement membranes and define their composition using samples from human kidney organoids and mouse fetal kidneys. This protocol facilitates the study of basement membrane and other ECM components during development to improve our understanding of matrix regulation and function. For complete details on the use and execution of this protocol, please refer to Morais et al.1.


Asunto(s)
Matriz Extracelular , Proteómica , Humanos , Animales , Ratones , Membrana Basal , Proteómica/métodos , Matriz Extracelular/metabolismo , Espectrometría de Masas , Riñón
5.
Nat Commun ; 14(1): 7237, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963878

RESUMEN

Daily rhythms in mammalian behaviour and physiology are generated by a multi-oscillator circadian system entrained through environmental cues (e.g. light and feeding). The presence of tissue niche-dependent physiological time cues has been proposed, allowing tissues the ability of circadian phase adjustment based on local signals. However, to date, such stimuli have remained elusive. Here we show that daily patterns of mechanical loading and associated osmotic challenge within physiological ranges reset circadian clock phase and amplitude in cartilage and intervertebral disc tissues in vivo and in tissue explant cultures. Hyperosmolarity (but not hypo-osmolarity) resets clocks in young and ageing skeletal tissues and induce genome-wide expression of rhythmic genes in cells. Mechanistically, RNAseq and biochemical analysis revealed the PLD2-mTORC2-AKT-GSK3ß axis as a convergent pathway for both in vivo loading and hyperosmolarity-induced clock changes. These results reveal diurnal patterns of mechanical loading and consequent daily oscillations in osmolarity as a bona fide tissue niche-specific time cue to maintain skeletal circadian rhythms in sync.


Asunto(s)
Relojes Circadianos , Animales , Relojes Circadianos/fisiología , Señales (Psicología) , Ritmo Circadiano/fisiología , Mamíferos/fisiología , Tiempo
6.
Sci Signal ; 16(810): eadf2537, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37934811

RESUMEN

Chemokine-driven leukocyte recruitment is a key component of the immune response and of various diseases. Therapeutically targeting the chemokine system in inflammatory disease has been unsuccessful, which has been attributed to redundancy. We investigated why chemokines instead have specific, specialized functions, as demonstrated by multiple studies. We analyzed the expression of genes encoding chemokines and their receptors across species, tissues, and diseases. This analysis revealed complex expression patterns such that genes encoding multiple chemokines that mediated recruitment of the same leukocyte type were expressed in the same context, such as the genes encoding the CXCR3 ligands CXCL9, CXCL10, and CXCL11. Through biophysical approaches, we showed that these chemokines differentially interacted with extracellular matrix glycosaminoglycans (ECM GAGs), which was enhanced by sulfation of specific GAGs. Last, in vivo approaches demonstrated that GAG binding was critical for the CXCL9-dependent recruitment of specific T cell subsets but not of others, irrespective of CXCR3 expression. Our data demonstrate that interactions with ECM GAGs regulated whether chemokines were presented on cell surfaces or remained more soluble, thereby affecting chemokine availability and ensuring specificity of chemokine action. Our findings provide a mechanistic understanding of chemokine-mediated immune cell recruitment and identify strategies to target specific chemokines during inflammatory disease.


Asunto(s)
Quimiocina CXCL10 , Proteoglicanos , Humanos , Quimiocinas/genética , Leucocitos , Matriz Extracelular/genética , Inflamación/genética
7.
Biophys J ; 122(16): 3219-3237, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37415335

RESUMEN

Collagen is a key structural component of multicellular organisms and is arranged in a highly organized manner. In structural tissues such as tendons, collagen forms bundles of parallel fibers between cells, which appear within a 24-h window between embryonic day 13.5 (E13.5) and E14.5 during mouse embryonic development. Current models assume that the organized structure of collagen requires direct cellular control, whereby cells actively lay down collagen fibrils from cell surfaces. However, such models appear incompatible with the time and length scales of fibril formation. We propose a phase-transition model to account for the rapid development of ordered fibrils in embryonic tendon, reducing reliance on active cellular processes. We develop phase-field crystal simulations of collagen fibrillogenesis in domains derived from electron micrographs of inter-cellular spaces in embryonic tendon and compare results qualitatively and quantitatively to observed patterns of fibril formation. To test the prediction of this phase-transition model that free protomeric collagen should exist in the inter-cellular spaces before the formation of observable fibrils, we use laser-capture microdissection, coupled with mass spectrometry, which demonstrates steadily increasing free collagen in inter-cellular spaces up to E13.5, followed by a rapid reduction of free collagen that coincides with the appearance of less-soluble collagen fibrils. The model and measurements together provide evidence for extracellular self-assembly of collagen fibrils in embryonic mouse tendon, supporting an additional mechanism for rapid collagen fibril formation during embryonic development.


Asunto(s)
Desarrollo Embrionario , Matriz Extracelular , Animales , Ratones , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Membrana Celular , Tendones/química , Tendones/metabolismo
8.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37232246

RESUMEN

Endocytic recycling controls the return of internalised cargoes to the plasma membrane to coordinate their positioning, availability and downstream signalling. The Rab4 and Rab11 small GTPase families regulate distinct recycling routes, broadly classified as fast recycling from early endosomes (Rab4) and slow recycling from perinuclear recycling endosomes (Rab11), and both routes handle a broad range of overlapping cargoes to regulate cell behaviour. We adopted a proximity labelling approach, BioID, to identify and compare the protein complexes recruited by Rab4a, Rab11a and Rab25 (a Rab11 family member implicated in cancer aggressiveness), revealing statistically robust protein-protein interaction networks of both new and well-characterised cargoes and trafficking machinery in migratory cancer cells. Gene ontological analysis of these interconnected networks revealed that these endocytic recycling pathways are intrinsically connected to cell motility and cell adhesion. Using a knock-sideways relocalisation approach, we were further able to confirm novel links between Rab11, Rab25 and the ESCPE-1 and retromer multiprotein sorting complexes, and identify new endocytic recycling machinery associated with Rab4, Rab11 and Rab25 that regulates cancer cell migration in the 3D matrix.


Asunto(s)
Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab4 , Humanos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab4/metabolismo , Transporte Biológico , Transporte de Proteínas/fisiología , Endosomas/metabolismo
9.
Respir Res ; 24(1): 99, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005656

RESUMEN

Honeycombing is a histological pattern consistent with Usual Interstitial Pneumonia (UIP). Honeycombing refers to cystic airways located at sites of dense fibrosis with marked mucus accumulation. Utilizing laser capture microdissection coupled mass spectrometry (LCM-MS), we interrogated the fibrotic honeycomb airway cells and fibrotic uninvolved airway cells (distant from honeycomb airways and morphologically intact) in specimens from 10 patients with UIP. Non-fibrotic airway cell specimens from 6 patients served as controls. Furthermore, we performed LCM-MS on the mucus plugs found in 6 patients with UIP and 6 patients with mucinous adenocarcinoma. The mass spectrometry data were subject to both qualitative and quantitative analysis and validated by immunohistochemistry. Surprisingly, fibrotic uninvolved airway cells share a similar protein profile to honeycomb airway cells, showing deregulation of the slit and roundabout receptor (Slit and Robo) pathway as the strongest category. We find that (BPI) fold-containing family B member 1 (BPIFB1) is the most significantly increased secretome-associated protein in UIP, whereas Mucin-5AC (MUC5AC) is the most significantly increased in mucinous adenocarcinoma. We conclude that fibrotic uninvolved airway cells share pathological features with fibrotic honeycomb airway cells. In addition, fibrotic honeycomb airway cells are enriched in mucin biogenesis proteins with a marked derangement in proteins essential for ciliogenesis. This unbiased spatial proteomic approach generates novel and testable hypotheses to decipher fibrosis progression.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteoma , Humanos , Proteómica , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología
10.
Cell Rep ; 42(1): 111930, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640356

RESUMEN

Leukocyte recruitment from the vasculature into tissues is a crucial component of the immune system but is also key to inflammatory disease. Chemokines are central to this process but have yet to be therapeutically targeted during inflammation due to a lack of mechanistic understanding. Specifically, CXCL4 (Platelet Factor 4, PF4) has no established receptor that explains its function. Here, we use biophysical, in vitro, and in vivo techniques to determine the mechanism underlying CXCL4-mediated leukocyte recruitment. We demonstrate that CXCL4 binds to glycosaminoglycan (GAG) sugars on proteoglycans within the endothelial extracellular matrix, resulting in increased adhesion of leukocytes to the vasculature, increased vascular permeability, and non-specific recruitment of a range of leukocytes. Furthermore, GAG sulfation confers selectivity onto chemokine localization. These findings present mechanistic insights into chemokine biology and provide future therapeutic targets.


Asunto(s)
Factor Plaquetario 4 , Proteoglicanos , Factor Plaquetario 4/metabolismo , Receptores de Quimiocina , Quimiocinas/metabolismo , Glicosaminoglicanos , Matriz Extracelular/metabolismo
11.
Integr Biol (Camb) ; 14(8-12): 171-183, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36573280

RESUMEN

The kidney tubule consists of a single layer of epithelial cells supported by the tubular basement membrane (TBM), a thin layer of specialized extracellular matrix (ECM). The mechanical properties of the ECM are important for regulating a wide range of cell functions including proliferation, differentiation and cell survival. Increased ECM stiffness plays a role in promoting multiple pathological conditions including cancer, fibrosis and heart disease. How changes in TBM mechanics regulate tubular epithelial cell behavior is not fully understood. Here we introduce a cell culture system that utilizes in vivo-derived TBM to investigate cell-matrix interactions in kidney proximal tubule cells. Basement membrane mechanics was controlled using genipin, a biocompatibility crosslinker. Genipin modification resulted in a dose-dependent increase in matrix stiffness. Crosslinking had a marginal but statistically significant impact on the diffusive molecular transport properties of the TBM, likely due to a reduction in pore size. Both native and genipin-modified TBM substrates supported tubular epithelial cell growth. Cells were able to attach and proliferate to form confluent monolayers. Tubular epithelial cells polarized and assembled organized cell-cell junctions. Genipin modification had minimal impact on cell viability and proliferation. Genipin stiffened TBM increased gene expression of pro-fibrotic cytokines and altered gene expression for N-cadherin, a proximal tubular epithelial specific cell-cell junction marker. This work introduces a new cell culture model for cell-basement membrane mechanobiology studies that utilizes in vivo-derived basement membrane. We also demonstrate that TBM stiffening affects tubular epithelial cell function through altered gene expression of cell-specific differentiation markers and induced increased expression of pro-fibrotic growth factors.


Asunto(s)
Iridoides , Túbulos Renales , Túbulos Renales/metabolismo , Túbulos Renales/patología , Iridoides/farmacología , Iridoides/metabolismo , Membrana Basal/fisiología , Células Epiteliales , Túbulos Renales Proximales
12.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35852874

RESUMEN

Usual interstitial pneumonia (UIP) is a histological pattern characteristic of idiopathic pulmonary fibrosis (IPF). The UIP pattern is patchy with histologically normal lung adjacent to dense fibrotic tissue. At this interface, fibroblastic foci (FF) are present and are sites where myofibroblasts and extracellular matrix (ECM) accumulate. Utilizing laser capture microdissection-coupled mass spectrometry, we interrogated the FF, adjacent mature scar, and adjacent alveoli in 6 fibrotic (UIP/IPF) specimens plus 6 nonfibrotic alveolar specimens as controls. The data were subjected to qualitative and quantitative analysis and histologically validated. We found that the fibrotic alveoli protein signature is defined by immune deregulation as the strongest category. The fibrotic mature scar classified as end-stage fibrosis whereas the FF contained an overabundance of a distinctive ECM compared with the nonfibrotic control. Furthermore, FF were positive for both TGFB1 and TGFB3, whereas the aberrant basaloid cell lining of FF was predominantly positive for TGFB2. In conclusion, spatial proteomics demonstrated distinct protein compositions in the histologically defined regions of UIP/IPF tissue. These data revealed that FF are the main site of collagen biosynthesis and that the adjacent alveoli are abnormal. This essential information will inform future mechanistic studies on fibrosis progression.


Asunto(s)
Fibrosis Pulmonar Idiopática , Cicatriz/patología , Colágeno , Matriz Extracelular/patología , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/patología
13.
J Cell Sci ; 135(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35543156

RESUMEN

The heterotrimeric BAG6 complex coordinates the direct handover of newly synthesised tail-anchored (TA) membrane proteins from an SGTA-bound preloading complex to the endoplasmic reticulum (ER) delivery component TRC40. In contrast, defective precursors, including aberrant TA proteins, form a stable complex with this cytosolic protein quality control factor, enabling such clients to be either productively re-routed or selectively degraded. We identify the mitochondrial antiviral-signalling protein (MAVS) as an endogenous TA client of both SGTA and the BAG6 complex. Our data suggest that the BAG6 complex binds to a cytosolic pool of MAVS before its misinsertion into the ER membrane, from where it can subsequently be removed via ATP13A1-mediated dislocation. This BAG6-associated fraction of MAVS is dynamic and responds to the activation of an innate immune response, suggesting that BAG6 may modulate the pool of MAVS that is available for coordinating the cellular response to viral infection.


Asunto(s)
Retículo Endoplásmico , Chaperonas Moleculares , Antivirales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo
14.
Sci Adv ; 8(20): eabn2265, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35584218

RESUMEN

Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in C. elegans and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFß. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in LAMA5, MPZL2, and MATN2 and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.


Asunto(s)
Caenorhabditis elegans , Pez Cebra , Animales , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Pez Cebra/genética
15.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076391

RESUMEN

Basement membranes (BMs) are complex macromolecular networks underlying all continuous layers of cells. Essential components include collagen IV and laminins, which are affected by human genetic variants leading to a range of debilitating conditions including kidney, muscle, and cerebrovascular phenotypes. We investigated the dynamics of BM assembly in human pluripotent stem cell-derived kidney organoids. We resolved their global BM composition and discovered a conserved temporal sequence in BM assembly that paralleled mammalian fetal kidneys. We identified the emergence of key BM isoforms, which were altered by a pathogenic variant in COL4A5. Integrating organoid, fetal, and adult kidney proteomes, we found dynamic regulation of BM composition through development to adulthood, and with single-cell transcriptomic analysis we mapped the cellular origins of BM components. Overall, we define the complex and dynamic nature of kidney organoid BM assembly and provide a platform for understanding its wider relevance in human development and disease.


Asunto(s)
Membrana Basal/patología , Membrana Basal/fisiología , Enfermedades Renales/patología , Riñón/fisiología , Organoides/fisiología , Animales , Biopsia , Técnicas de Cultivo Tridimensional de Células/métodos , Línea Celular , Preescolar , Colágeno Tipo IV/genética , Proteínas de la Matriz Extracelular/genética , Femenino , Humanos , Riñón/patología , Enfermedades Renales/genética , Masculino , Ratones , Células Madre Pluripotentes/fisiología , Proteómica/métodos
16.
Life Sci Alliance ; 4(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34127548

RESUMEN

IL-13 is implicated in effective repair after acute lung injury and the pathogenesis of chronic diseases such as allergic asthma. Both these processes involve matrix remodelling, but understanding the specific contribution of IL-13 has been challenging because IL-13 shares receptors and signalling pathways with IL-4. Here, we used Nippostrongylus brasiliensis infection as a model of acute lung damage comparing responses between WT and IL-13-deficient mice, in which IL-4 signalling is intact. We found that IL-13 played a critical role in limiting tissue injury and haemorrhaging in the lung, and through proteomic and transcriptomic profiling, identified IL-13-dependent changes in matrix and associated regulators. We further showed a requirement for IL-13 in the induction of epithelial-derived type 2 effector molecules such as RELM-α and surfactant protein D. Pathway analyses predicted that IL-13 induced cellular stress responses and regulated lung epithelial cell differentiation by suppression of Foxa2 pathways. Thus, in the context of acute lung damage, IL-13 has tissue-protective functions and regulates epithelial cell responses during type 2 immunity.


Asunto(s)
Lesión Pulmonar Aguda/parasitología , Interleucina-13/deficiencia , Nippostrongylus/patogenicidad , Infecciones por Strongylida/genética , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Proteómica , Infecciones por Strongylida/metabolismo , Regulación hacia Arriba
17.
Curr Protoc Cell Biol ; 88(1): e113, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32833344

RESUMEN

BioID, a proximity biotinylation technique, offers a valuable approach to examine the interactions occurring within protein complexes that complements traditional protein biochemical methods. BioID has various advantages that are beneficial to the study of complexes, including an ability to detect insoluble and transient proteins. We have applied BioID to the study of integrin adhesion complexes (IACs), which are located at the junction between the plasma membrane and actin cytoskeleton. The use of multiple BioID baits enables a complex-wide, spatial annotation of IACs, which in turn facilitates the detection of novel proximal interactors and provides insights into IAC architecture. This article describes the labeling and affinity purification of IAC-proximal proteins and their analysis by label-free quantitative mass spectrometry. The article also outlines steps to identify high-confidence proximity interactors, and to interrogate the topology and functional relevance of proximity interaction networks through bioinformatic analyses. © 2020 The Authors. Basic Protocol 1: Proximity biotinylation of integrin adhesion complex components Basic Protocol 2: Mass spectrometry data processing by MaxQuant and detection of high-confidence proximal interactors Basic Protocol 3: Bioinformatic analysis and data visualization.


Asunto(s)
Biotinilación , Integrinas/metabolismo , Espectrometría de Masas , Mapeo de Interacción de Proteínas , Biotinilación/métodos , Membrana Celular/metabolismo , Cromatografía de Afinidad/métodos , Humanos , Espectrometría de Masas/métodos , Mapeo de Interacción de Proteínas/métodos
18.
J Cell Biol ; 219(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32585685

RESUMEN

Integrin adhesion complexes (IACs) bridge the extracellular matrix to the actin cytoskeleton and transduce signals in response to both chemical and mechanical cues. The composition, interactions, stoichiometry, and topological organization of proteins within IACs are not fully understood. To address this gap, we used multiplexed proximity biotinylation (BioID) to generate an in situ, proximity-dependent adhesome in mouse pancreatic fibroblasts. Integration of the interactomes of 16 IAC-associated baits revealed a network of 147 proteins with 361 proximity interactions. Candidates with underappreciated roles in adhesion were identified, in addition to established IAC components. Bioinformatic analysis revealed five clusters of IAC baits that link to common groups of prey, and which therefore may represent functional modules. The five clusters, and their spatial associations, are consistent with current models of IAC interaction networks and stratification. This study provides a resource to examine proximal relationships within IACs at a global level.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Adhesión Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Integrinas/metabolismo , Páncreas/metabolismo , Proteómica , Animales , Biotinilación , Línea Celular , Cromatografía Líquida de Alta Presión , Biología Computacional , Ratones , Páncreas/citología , Mapas de Interacción de Proteínas , Transducción de Señal , Espectrometría de Masas en Tándem
19.
Clin Proteomics ; 17: 24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32565759

RESUMEN

BACKGROUND: Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. METHODS: Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. RESULTS: This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3. CONCLUSION: Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.

20.
Mol Biol Evol ; 37(10): 2931-2943, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32497204

RESUMEN

Ancient biomolecule analyses are proving increasingly useful in the study of evolutionary patterns, including extinct organisms. Proteomic sequencing techniques complement genomic approaches, having the potential to examine lineages further back in time than achievable using ancient DNA, given the less stringent preservation requirements. In this study, we demonstrate the ability to use collagen sequence analyses via proteomics to assist species delimitation as a foundation for informing evolutionary patterns. We uncover biogeographic information of an enigmatic and recently extinct lineage of Nesophontes across their range on the Caribbean islands. First, evolutionary relationships reconstructed from collagen sequences reaffirm the affinity of Nesophontes and Solenodon as sister taxa within Solenodonota. This relationship helps lay the foundation for testing geographical isolation hypotheses across islands within the Greater Antilles, including movement from Cuba toward Hispaniola. Second, our results are consistent with Cuba having just two species of Nesophontes (N. micrus and N. major) that exhibit intrapopulation morphological variation. Finally, analysis of the recently described species from the Cayman Islands (N. hemicingulus) indicates that it is a closer relative to N. major rather than N. micrus as previously speculated. This proteomic sequencing improves our understanding of the origin, evolution, and distribution of this extinct mammal lineage, particularly with respect to the approximate timing of speciation. Such knowledge is vital for this biodiversity hotspot, where the magnitude of recent extinctions may obscure true estimates of species richness in the past.


Asunto(s)
Evolución Biológica , Colágeno/química , Musarañas/genética , Animales , Femenino , Masculino , Mandíbula/anatomía & histología , Filogeografía , Análisis de Secuencia de Proteína , Caracteres Sexuales , Musarañas/anatomía & histología , Indias Occidentales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...