Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38766771

RESUMEN

Body posture and biological sex exhibit independent effects on the sympathetic neural responses to dynamic exercise. However, the neural mechanisms (e.g., baroreflex) by which posture impacts sympathetic outflow during rhythmic muscular contractions and whether biological sex affects posture-mediated changes in efferent sympathetic nerve traffic during exercise remains unknown. Thus, we tested the hypotheses that increases in muscle sympathetic nerve activity (MSNA) would be greater during upright compared to supine rhythmic handgrip (RHG) exercise, and that females would demonstrate smaller increases in MSNA during upright RHG exercise than males. Twenty young (30 [6] years; mean [SD]) individuals (9 males, 11 females) underwent 6-minutes of supine and upright (head-up tilt 45°) RHG exercise at 40% maximal voluntary contraction with continuous measurements of MSNA (microneurography), blood pressure (photoplethysmography) and heart rate (electrocardiogram). In the pooled group, absolute MSNA burst frequency (P<0.001), amplitude (P=0.009), and total MSNA (P<0.001) were higher during upright compared to supine RHG exercise. However, body posture did not impact the peak change in MSNA during RHG exercise (range: P=0.063-0.495). Spontaneous sympathetic baroreflex gain decreased from rest to RHG exercise (P=0.006) and was not impacted by posture (P=0.347). During upright RHG exercise, males demonstrated larger increases in MSNA burst amplitude (P=0.002) and total MSNA (P=0.001) compared to females, that coincided with greater reductions in sympathetic baroreflex gain (P=0.004). Collectively, these data indicate that acute attenuation of baroreflex-mediated sympathoinhibition permits increases in MSNA during RHG exercise, and that males exhibit a greater reserve for efferent sympathetic neural recruitment during orthostasis than females.

2.
J Physiol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687185

RESUMEN

During acute hypoxic exposure, cerebral blood flow (CBF) increases to compensate for the reduced arterial oxygen content (CaO2). Nevertheless, as exposure extends, both CaO2 and CBF progressively normalize. Haemoconcentration is the primary mechanism underlying the CaO2 restoration and may therefore explain, at least in part, the CBF normalization. Accordingly, we tested the hypothesis that reversing the haemoconcentration associated with extended hypoxic exposure returns CBF towards the values observed in acute hypoxia. Twenty-three healthy lowlanders (12 females) completed two identical 4-day sojourns in a hypobaric chamber, one in normoxia (NX) and one in hypobaric hypoxia (HH, 3500 m). CBF was measured by ultrasound after 1, 6, 12, 48 and 96 h and compared between sojourns to assess the time course of changes in CBF. In addition, CBF was measured at the end of the HH sojourn after hypervolaemic haemodilution. Compared with NX, CBF was increased in HH after 1 h (P = 0.001) but similar at all later time points (all P > 0.199). Haemoglobin concentration was higher in HH than NX from 12 h to 96 h (all P < 0.001). While haemodilution reduced haemoglobin concentration from 14.8 ± 1.0 to 13.9 ± 1.2 g·dl-1 (P < 0.001), it did not increase CBF (974 ± 282 to 872 ± 200 ml·min-1; P = 0.135). We thus conclude that, at least at this moderate altitude, haemoconcentration is not the primary mechanism underlying CBF normalization with acclimatization. These data ostensibly reflect the fact that CBF regulation at high altitude is a complex process that integrates physiological variables beyond CaO2. KEY POINTS: Acute hypoxia causes an increase in cerebral blood flow (CBF). However, as exposure extends, CBF progressively normalizes. We investigated whether hypoxia-induced haemoconcentration contributes to the normalization of CBF during extended hypoxia. Following 4 days of hypobaric hypoxic exposure (corresponding to 3500 m altitude), we measured CBF before and after abolishing hypoxia-induced haemoconcentration by hypervolaemic haemodilution. Contrary to our hypothesis, the haemodilution did not increase CBF in hypoxia. Our findings do not support haemoconcentration as a stimulus for the CBF normalization during extended hypoxia.

3.
J Physiol ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533641

RESUMEN

Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content ( C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.

4.
J Physiol ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409819

RESUMEN

Acute hypoxia increases pulmonary arterial (PA) pressures, though its effect on right ventricular (RV) function is controversial. The objective of this study was to characterize exertional RV performance during acute hypoxia. Ten healthy participants (34 ± 10 years, 7 males) completed three visits: visits 1 and 2 included non-invasive normoxic (fraction of inspired oxygen ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) = 0.21) and isobaric hypoxic ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12) cardiopulmonary exercise testing (CPET) to determine normoxic/hypoxic maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ). Visit 3 involved invasive haemodynamic assessments where participants were randomized 1:1 to either Swan-Ganz or conductance catheterization to quantify RV performance via pressure-volume analysis. Arterial oxygen saturation was determined by blood gas analysis from radial arterial catheterization. During visit 3, participants completed invasive submaximal CPET testing at 50% normoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ and again at 50% hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12). Median (interquartile range) values for non-invasive V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ values during normoxic and hypoxic testing were 2.98 (2.43, 3.66) l/min and 1.84 (1.62, 2.25) l/min, respectively (P < 0.0001). Mean PA pressure increased significantly when transitioning from rest to submaximal exercise during normoxic and hypoxic conditions (P = 0.0014). Metrics of RV contractility including preload recruitable stroke work, dP/dtmax , and end-systolic pressure increased significantly during the transition from rest to exercise under normoxic and hypoxic conditions. Ventricular-arterial coupling was maintained during normoxic exercise at 50% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ . During submaximal exercise at 50% of hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , ventricular-arterial coupling declined but remained within normal limits. In conclusion, resting and exertional RV functions are preserved in response to acute exposure to hypoxia at an F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12 and the associated increase in PA pressures. KEY POINTS: The healthy right ventricle augments contractility, lusitropy and energetics during periods of increased metabolic demand (e.g. exercise) in acute hypoxic conditions. During submaximal exercise, ventricular-arterial coupling decreases but remains within normal limits, ensuring that cardiac output and systemic perfusion are maintained. These data describe right ventricular physiological responses during submaximal exercise under conditions of acute hypoxia, such as occurs during exposure to high altitude and/or acute hypoxic respiratory failure.

5.
JACC Heart Fail ; 12(1): 117-129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37632493

RESUMEN

BACKGROUND: Patients with heart failure with reduced ejection fraction (HFrEF) have persistent impairments in functional capacity after continuous-flow left ventricular assist device (CF-LVAD) implantation. OBJECTIVES: This study aims to characterize longitudinal changes in exercise hemodynamics and functional capacity among patients with HFrEF before and after CF-LVAD implantation. METHODS: Ten patients underwent 3 invasive cardiopulmonary exercise tests on upright cycle ergometry with pulmonary artery catheterization: 1) Visit 1 before CF-LVAD implantation; 2) Visit 2 after device implantation with CF-LVAD pump speed held constant at baseline speed; and 3) Visit 3 with increases in pump speed during exercise (median: 1,050 rpm [IQR: 750-1,150 rpm] and 220 rpm [IQR: 120-220 rpm] for HeartMate 3 and HeartWare VAD, respectively). Hemodynamics and direct Fick cardiac output were monitored using pulmonary artery catheterization. Gas exchange metrics were determined using indirect calorimetry. RESULTS: Maximal oxygen uptake (Visits 1, 2, and 3: 10.8 ± 2.5 mL/kg/min, 10.7 ± 2.2 mL/kg/min, and 11.5 ± 1.7 mL/kg/min; P = 0.92) did not improve after device implantation. Mean pulmonary arterial and pulmonary capillary wedge pressures increased significantly during submaximal and peak exercise on preimplantation testing (P < 0.01 for rest vs peak exercise) and remained elevated, with minimal change on Visits 2 and 3 regardless of whether pump speed was fixed or increased. CONCLUSIONS: Among patients with HFrEF, cardiovascular hemodynamics and exercise capacity were similar after CF-LVAD implantation, regardless of whether patients exercised at fixed or adjusted pump speeds during exercise. Further research is needed to determine methods by which LVADs may alleviate the HFrEF syndrome after device implantation. (Effect of mechanIcal circulatoRy support ON exercise capacity aMong pAtieNts with heart failure [IRONMAN]; NCT03078972).


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Disfunción Ventricular Izquierda , Humanos , Gasto Cardíaco , Prueba de Esfuerzo/métodos , Insuficiencia Cardíaca/terapia , Hemodinámica , Volumen Sistólico , Función Ventricular Izquierda
6.
J Cardiopulm Rehabil Prev ; 43(6): 400-406, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37646620

RESUMEN

The post-acute sequalae of SARS-CoV-2, also known as "Long COVID," is characterized by profound fatigue, impaired functional capacity with post-exertional malaise, orthostatic intolerance, and tachycardia. At least 25-30% of individuals impacted by SARS-CoV-2 will go on to experience the Long COVID syndrome, underscoring the detrimental impact this condition has on society. Although efforts are underway to further understand risk factors for Long COVID and identify strategies to prevent disease development entirely, implementation of treatment strategies is warranted to alleviate symptom burden among those affected. This review provides a rationale for exercise prescriptions tailored to the Long COVID patient based on the pathophysiology underlying this syndrome, as well as the previously demonstrated benefits of exercise training in other similar populations whose clinical manifestations result from cardiac deconditioning. Herein, we discuss methods to tailor exercise protocols, accommodating exercise intolerance and post-exertional malaise that may otherwise limit the ability to participate in a training protocol, as well as data demonstrating that a focused exercise prescription may effectively alleviate symptom burden in these patients. Long COVID results, in large part, from deconditioning, which may result from as little as 20 hr of inactivity. Exercise prescriptions tailored to patients with Long COVID may effectively alleviate symptom burden associated with this condition and in the absence of overt contraindications should be considered in management.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , SARS-CoV-2 , Terapia por Ejercicio , Ejercicio Físico
8.
JACC Heart Fail ; 11(7): 760-771, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37086245

RESUMEN

BACKGROUND: Impaired ventricular relaxation influences left ventricular pressures during exercise in heart failure with preserved ejection fraction (HFpEF). Sarco/endoplasmic reticulum calcium-adenosine triphosphatase (SERCA2a) facilitates myocardial relaxation by increasing calcium reuptake and is impaired in HFpEF. OBJECTIVES: This study sought to investigate the effects of istaroxime, a SERCA2 agonist, on lusitropic and hemodynamic function during exercise in patients with HFpEF and control subjects. METHODS: Eleven control subjects (7 male, 4 female) and 15 patients with HFpEF (8 male, 7 female) performed upright cycle exercise with right-sided heart catheterization. Participants received istaroxime (0.5 µg/kg/min) or saline placebo (single-blind, crossover design). Cardiac output, pulmonary capillary wedge pressure (PCWP), and diastolic function were measured at rest and during submaximal exercise. In an exploratory analysis (Hedge's g), 7 patients with HFpEF received higher-dose istaroxime (1.0 µg/kg/min). End-systolic elastance (Ees) was calculated by dividing systolic blood pressure (SBP) × 0.9 by end-systolic volume (ESV) (on 3-dimensional echocardiography). RESULTS: Patients with HFpEF had higher PCWP (25 ± 10 mm Hg vs 12 ± 5 mm Hg; P < 0.001) and lower tissue Doppler velocities during exercise. Istaroxime (0.5 µg/kg/min) had no effect on resting or exercise measures in patients with HFpEF or control subjects. Control subjects had a larger increase in Ees (Δ 1.55 ± 0.99 mm Hg/mL vs Δ 0.86 ± 1.31 mm Hg/mL; P = 0.03), driven by lower ESV. Comparing placebo and istaroxime 1.0 µg/kg/min during exercise, PCWP during the 1.0 µg/kg/min istaroxime dose was slightly lower (Δ 2.2 mm Hg; Hedge's g = 0.30). There were no effects on diastolic function, but there were increases in SBP and s', suggesting a mild inotropic effect. CONCLUSIONS: Low-dose istaroxime had no effect on cardiac filling pressure or parameters of relaxation in patients with HFpEF during exercise. Higher doses of istaroxime may have been more effective in reducing exercise PCWP in patients with HFpEF. (Hemodynamic Response to Exercise in HFpEF Patients After Upregulation of SERCA2a; NCT02772068).


Asunto(s)
Insuficiencia Cardíaca , Humanos , Masculino , Femenino , Volumen Sistólico/fisiología , Calcio , Método Simple Ciego , Corazón , Cateterismo Cardíaco , Función Ventricular Izquierda/fisiología
9.
J Card Fail ; 29(9): 1276-1284, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36871613

RESUMEN

BACKGROUND: Exertional dyspnea is a cardinal manifestation of heart failure with reduced ejection fraction (HFrEF), but quantitative data regarding exertional hemodynamics are lacking. OBJECTIVES: We sought to characterize exertional cardiopulmonary hemodynamics in patients with HFrEF. METHODS: We studied 35 patients with HFrEF (59 ± 12 years old, 30 males) who completed invasive cardiopulmonary exercise testing. Data were collected at rest, at submaximal exercise and at peak effort on upright cycle ergometry. Cardiovascular and pulmonary vascular hemodynamics were recorded. Fick cardiac output (Qc) was determined. Hemodynamic predictors of peak oxygen uptake (VO2) were identified. RESULTS: Left ventricular ejection fraction and cardiac index were 23% ± 8% and 2.9 ± 1.1 L/min/m2, respectively. Peak VO2 was 11.8 ± 3.3 mL/kg/min, and the ventilatory efficiency slope was 53 ± 13. Right atrial pressure increased from rest to peak exercise (4 ± 5 vs 7 ± 6 mmHg,). Mean pulmonary arterial pressure increased from rest to peak exercise (27 ± 13 vs 38 ± 14 mmHg). Pulmonary artery pulsatility index increased from rest to peak exercise, while pulmonary arterial capacitance and pulmonary vascular resistance declined. CONCLUSIONS: Patients with HFrEF suffer from marked increases in filling pressures during exercise. These findings provide new insight into cardiopulmonary abnormalities contributing to impairments in exercise capacity in this population. CLINICAL TRIAL REGISTRATION: clinicaltrials.gov identifier: NCT03078972.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Anciano , Humanos , Masculino , Persona de Mediana Edad , Gasto Cardíaco , Prueba de Esfuerzo , Tolerancia al Ejercicio , Hemodinámica , Consumo de Oxígeno , Volumen Sistólico , Función Ventricular Izquierda , Femenino
10.
Eur J Appl Physiol ; 123(5): 1091-1099, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36645478

RESUMEN

PURPOSE: Resistance training (RT) is an effective countermeasure to combat physical deconditioning whereby localized hypoxia within the limb increases metabolic stress eliciting muscle adaptation. The current study sought to examine the influence of gravity on muscle oxygenation (SmO2) alongside vascular hemodynamic responses. METHODS: In twelve young healthy adults, an ischemic occlusion test and seven minutes of low-intensity rhythmic plantarflexion exercise were used alongside superficial femoral blood flow and calf near-infrared spectroscopy to assess the microvascular vasodilator response, conduit artery flow-mediated dilation, exercise-induced hyperemia, and SmO2 with the leg positioned above or below the heart in a randomized order. RESULTS: The microvascular vasodilator response, assessed by peak blood flow (798 ± 231 mL/min vs. 1348 ± 290 mL/min; p < 0.001) and reperfusion slope 10 s of SmO2 after cuff deflation (0.75 ± 0.45%.s-1 vs.2.40 ± 0.94%.s-1; p < 0.001), was attenuated with the leg above the heart. This caused a blunted dilatation of the superficial femoral artery (3.0 ± 2.4% vs. 5.2 ± 2.1%; p = 0.008). Meanwhile, blood flow area under the curve was comparable (above the heart: 445 ± 147 mL vs. below the heart: 474 ± 118 mL; p = 0.55) in both leg positions. During rhythmic exercise, the increase in femoral blood flow was lower in the leg up position (above the heart: 201 ± 94% vs. below the heart: 292 ± 114%; p = 0.001) and contributed to a lower SmO2 (above the heart: 41 ± 18% vs. below the heart 67 ± 5%; p < 0.001). CONCLUSION: Positioning the leg above the heart results in attenuated peak vascular dilator response and exercise-induced hyperemia that coincided with a lower SmO2 during low-intensity plantarflexion exercise.


Asunto(s)
Hiperemia , Pierna , Adulto , Humanos , Pierna/irrigación sanguínea , Músculo Esquelético/fisiología , Flujo Sanguíneo Regional/fisiología , Vasodilatadores , Hemodinámica
11.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R457-R469, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36717165

RESUMEN

Sympathetic transduction is reduced following chronic high-altitude (HA) exposure; however, vascular α-adrenergic signaling, the primary mechanism mediating sympathetic vasoconstriction at sea level (SL), has not been examined at HA. In nine male lowlanders, we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (ΔFVC) during 1) incremental intra-arterial infusion of phenylephrine to assess α1-adrenergic receptor responsiveness and 2) combined intra-arterial infusion of ß-adrenergic and α-adrenergic antagonists propranolol and phentolamine (α-ß-blockade) to assess adrenergic vascular restraint at rest and during exercise-induced sympathoexcitation (cycling; 60% peak power). Experiments were performed near SL (344 m) and after 3 wk at HA (4,383 m). HA abolished the vasoconstrictor response to low-dose phenylephrine (ΔFVC: SL: -34 ± 15%, vs. HA; +3 ± 18%; P < 0.0001) and markedly attenuated the response to medium (ΔFVC: SL: -45 ± 18% vs. HA: -28 ± 11%; P = 0.009) and high (ΔFVC: SL: -47 ± 20%, vs. HA: -35 ± 20%; P = 0.041) doses. Blockade of ß-adrenergic receptors alone had no effect on resting FVC (P = 0.500) and combined α-ß-blockade induced a similar vasodilatory response at SL and HA (P = 0.580). Forearm vasoconstriction during cycling was not different at SL and HA (P = 0.999). Interestingly, cycling-induced forearm vasoconstriction was attenuated by α-ß-blockade at SL (ΔFVC: Control: -27 ± 128 vs. α-ß-blockade: +19 ± 23%; P = 0.0004), but unaffected at HA (ΔFVC: Control: -20 ± 22 vs. α-ß-blockade: -23 ± 11%; P = 0.999). Our results indicate that in healthy males, altitude acclimatization attenuates α1-adrenergic receptor responsiveness; however, resting α-adrenergic restraint remains intact, due to concurrent resting sympathoexcitation. Furthermore, forearm vasoconstrictor responses to cycling are preserved, although the contribution of adrenergic receptors is diminished, indicating a reliance on alternative vasoconstrictor mechanisms.


Asunto(s)
Adrenérgicos , Vasoconstricción , Masculino , Humanos , Adrenérgicos/farmacología , Vasoconstrictores/farmacología , Fenilefrina/farmacología , Flujo Sanguíneo Regional , Músculo Esquelético/fisiología , Hipoxia
12.
Exp Physiol ; 108(1): 38-49, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36205383

RESUMEN

NEW FINDINGS: What is the central question of this study? Why does blood pressure increases during cold air exposure? Specifically, what is the contribution of skin and skeletal muscle vascular resistance during whole body versus isolated face cooling? What is the main finding and its importance? Whole-body cooling caused an increase in blood pressure through an increase in skeletal muscle and cutaneous vascular resistance. However, isolated mild face cooling caused an increase in blood pressure predominately via an increase in cutaneous vasoconstriction. ABSTRACT: The primary aim of this investigation was to determine the individual contribution of the cutaneous and skeletal muscle circulations to the cold-induced pressor response. To address this, we examined local vascular resistances in the cutaneous and skeletal muscle of the arm and leg. Thirty-four healthy individuals underwent three different protocols, whereby cold air to clamp skin temperature (27°C) was passed over (1) the whole-body, (2) the whole-body, but with the forearm pre-cooled to clamp cutaneous vascular resistance, and (3) the face. Cold exposure applied to the whole body or isolated to the face increased mean arterial pressure (all, P < 0.001) and total peripheral resistance (all, P < 0.047) compared to thermal neutral baseline. Whole-body cooling increased femoral (P < 0.005) and brachial artery resistance (P < 0.003) compared to thermoneutral baseline. Moreover, when the forearm was pre-cooled to remove the contribution of cutaneous resistance (P = 0.991), there was a further increase in lower arm vasoconstriction (P = 0.036) when whole-body cooling was superimposed. Face cooling also caused a reflex increase in lower arm cutaneous (P = 0.009) and brachial resistance (P = 0.050), yet there was no change in femoral resistance (P = 0.815) despite a reflex increase in leg cutaneous resistance (P = 0.010). Cold stress causes an increase in blood pressure through a change in total peripheral resistance that is largely due to cutaneous vasoconstriction with face cooling, but there is additional vasoconstriction in the skeletal muscle vasculature with whole-body cooling.


Asunto(s)
Temperatura Cutánea , Piel , Humanos , Presión Sanguínea , Piel/irrigación sanguínea , Resistencia Vascular , Vasoconstricción/fisiología , Músculo Esquelético , Frío , Flujo Sanguíneo Regional/fisiología
13.
Front Sports Act Living ; 5: 1269870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162697

RESUMEN

Introduction: Climbing is an increasingly popular activity and imposes specific physiological demands on the human body, which results in unique injury presentations. Of particular concern are overuse injuries (non-traumatic injuries). These injuries tend to present in the upper body and might be preventable with adequate knowledge of risk factors which could inform about injury prevention strategies. Research in this area has recently emerged but has yet to be synthesized comprehensively. Therefore, the aim of this study was to conduct a systematic review of the potential risk factors and injury prevention strategies for overuse injuries in adult climbers. Methods: This systematic review was conducted in accordance with the PRISMA guidelines. Databases were searched systematically, and articles were deemed eligible based upon specific criteria. Research included was original and peer-reviewed, involving climbers, and published in English, German or Czech. Outcomes included overuse injury, and at least one or more variable indicating potential risk factors or injury prevention strategies. The methodological quality of the included studies was assessed with the Downs and Black Quality Index. Data were extracted from included studies and reported descriptively for population, climbing sport type, study design, injury definition and incidence/prevalence, risk factors, and injury prevention strategies. Results: Out of 1,183 records, a total of 34 studies were included in the final analysis. Higher climbing intensity, bouldering, reduced grip/finger strength, use of a "crimp" grip, and previous injury were associated with an increased risk of overuse injury. Additionally, a strength training intervention prevented shoulder and elbow injuries. BMI/body weight, warm up/cool downs, stretching, taping and hydration were not associated with risk of overuse injury. The evidence for the risk factors of training volume, age/years of climbing experience, and sex was conflicting. Discussion: This review presents several risk factors which appear to increase the risk of overuse injury in climbers. Strength and conditioning, load management, and climbing technique could be targeted in injury prevention programs, to enhance the health and wellbeing of climbing athletes. Further research is required to investigate the conflicting findings reported across included studies, and to investigate the effectiveness of injury prevention programs. Systematic Review Registration: https://www.crd.york.ac.uk/, PROSPERO (CRD42023404031).

14.
Sci Rep ; 12(1): 19998, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411293

RESUMEN

Global warming has caused an increase in the frequency, duration, and intensity of summer heatwaves (HWs). Prolonged exposure to hot environments and orthostasis may cause conflicting demands of thermoregulation and blood pressure regulation on the vasomotor system, potentially contributing to cardiovascular complications and occupational heat strain. This study assessed cardiovascular and skin blood flow (SkBF) responses to orthostasis before, during and after a 3-day simulated HW. Seven male participants maintained a standard work/rest schedule for nine consecutive days split into three 3-day parts; thermoneutral pre-HW (25.4 °C), simulated HW (35.4 °C), thermoneutral post-HW. Gastrointestinal (Tgi) and skin (Tsk) temperatures, cardiovascular responses, and SkBF were monitored during 10-min supine and 10-min 60° head-up tilt (HUT). SkBF, indexed using proximal-distal skin temperature gradient (∆TskP-D), was validated using Laser-Doppler Flowmetry (LDF). The HW significantly increased heart rate, cardiac output and SkBF of the leg in supine; HUT increased SkBF of the arm and leg, and significantly affected all cardiovascular variables besides cardiac output. Significant regional differences in SkBF presented between the arm and leg in all conditions; the arm displaying vasodilation throughout, while the leg vasoconstricted in non-HW before shifting to vasodilation in the HW. Additionally, ∆TskP-D strongly correlated with LDF (r = -.78, p < 0.001). Prolonged HW exposure and orthostasis, individually, elicited significant changes in cardiovascular and SkBF variables. Additionally, varying regional blood flow responses were observed, suggesting the upper and lower vasculature receives differing vasomotor control. Combined cardiovascular alterations and shifts towards vasodilation indicate an increased challenge to industrial workers during HWs.


Asunto(s)
Sistema Cardiovascular , Mareo , Humanos , Masculino , Temperatura Cutánea , Flujo Sanguíneo Regional , Regulación de la Temperatura Corporal
15.
Exerc Sport Sci Rev ; 50(4): 222-229, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36095073

RESUMEN

Approximately 6 million individuals have heart failure in the United States alone and 15 million in Europe. Left ventricular assist devices (LVAD) improve survival in these patients, but functional capacity may not fully improve. This article examines the hypothesis that patients supported by LVAD experience persistent reductions in functional capacity and explores mechanisms accounting for abnormalities in exercise tolerance.


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Tolerancia al Ejercicio , Insuficiencia Cardíaca/terapia , Humanos , Estados Unidos
16.
J Sports Sci ; 40(16): 1874-1884, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36040014

RESUMEN

This study investigated the physiological, performance and training characteristics of U23 cyclists and assessed the requirements of stepping up to the elite/international ranks. Twenty highly trained U23 cyclists (age, 22.1 ± 0.8 years; body mass, 69.1 ± 6.8 kg; VO2max, 76.1 ± 3.9 ml·kg-1·min-1) participated in this study. The cyclists were a posteriori divided into two groups based on whether or not they stepped up to elite/international level cycling (U23ELITE vs. U23NON-ELITE). Physiological, performance and training and racing characteristics were determined and compared between groups. U23ELITE demonstrated higher absolute peak power output (p = .016), 2 min (p = .026) 5 min (p = .042) and 12 min (p ≤ .001) power output as well as higher absolute critical power (p = .002). Further, U23ELITE recorded more accumulated hours (p ≤ .001), covered distance (p ≤ .001), climbing metres (p ≤ .001), total sessions (p ≤ .001), total work (p ≤ .001) and scored more UCI points (p ≤ .001). These findings indicate that U23ELITE substantially differed from U23NON-ELITE regarding physiological, performance and training and racing characteristics derived from laboratory and field. These variables should be considered by practitioners supporting young cyclists throughout their development towards the elite/international ranks.


Asunto(s)
Ciclismo , Humanos , Adulto Joven , Adulto , Ciclismo/fisiología
17.
J Appl Physiol (1985) ; 133(2): 390-402, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35708700

RESUMEN

Passive hot water immersion (PHWI) provides a peripheral vasculature shear stimulus comparable to low-intensity exercise within the active skeletal muscle, whereas moderate- and high-intensity exercise elicit substantially greater shear rates in the peripheral vasculature, likely conferring greater vascular benefits. Notably, few studies have compared postintervention shear rates in the peripheral and cerebral vasculature after high-intensity exercise and PHWI, especially considering that the postintervention recovery period represents a key window in which adaptation occurs. Therefore, we aimed to compare shear rates in the internal carotid artery (ICA), vertebral artery (VA), and common femoral artery (CFA) between high-intensity exercise and whole body PHWI for up to 80 min after intervention. Fifteen healthy (27 ± 4 yr), moderately trained individuals underwent three time-matched interventions in a randomized order that included 30 min of whole body immersion in a 42°C hot bath, 30 min of treadmill running and 5 × 4-min high-intensity intervals (HIIE). There were no differences in ICA (P = 0.4643) and VA (P = 0.1940) shear rates between PHWI and exercise (both continuous and HIIE) after intervention. All three interventions elicited comparable increases in CFA shear rate after intervention (P = 0.0671); however, CFA shear rate was slightly higher 40 min after threshold running (P = 0.0464) and slightly higher, although not statistically, for HIIE (P = 0.0565) compared with PHWI. Our results suggest that time- and core temperature-matched high-intensity exercise and PHWI elicit limited changes in cerebral shear and comparable increases in peripheral vasculature shear rates when measured for up to 80 min after intervention.NEW & NOTEWORTHY The study aimed to compare shear rates in lower limb and extracranial cerebral blood vessels for up to 80 min after high-intensity exercise and whole body passive hot water immersion (PHWI). Time- and core temperature-matched high-intensity exercise and whole body PHWI both elicited minimal, but comparable, postintervention changes in cerebral artery shear rate. Furthermore, 30 min of PHWI caused a postintervention increase in femoral shear rate similar to high-intensity exercise; however, femoral shear remained slightly elevated for a longer period after high-intensity exercise. These results suggest that PHWI provides postintervention changes in lower limb peripheral shear rates comparable to intense exercise and is likely a therapeutic alternative in individuals unable to perform exercise.


Asunto(s)
Ejercicio Físico , Inmersión , Arterias Cerebrales , Humanos , Músculo Esquelético , Agua
18.
J Physiol ; 600(15): 3483-3495, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35738560

RESUMEN

Chronic exposure to hypoxia (high-altitude, HA; >4000 m) attenuates the vasodilatory response to exercise and is associated with a persistent increase in basal sympathetic nerve activity (SNA). The mechanism(s) responsible for the reduced vasodilatation and exercise hyperaemia at HA remains unknown. We hypothesized that heightened adrenergic signalling restrains skeletal muscle blood flow during handgrip exercise in lowlanders acclimatizing to HA. We tested nine adult males (n = 9) at sea-level (SL; 344 m) and following 21-28 days at HA (∼4300 m). Forearm blood flow (FBF; duplex ultrasonography), mean arterial pressure (MAP; brachial artery catheter), forearm vascular conductance (FVC; FBF/MAP), and arterial and venous blood sampling (O2 delivery ( DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ ) and uptake ( V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ )) were measured at rest and during graded rhythmic handgrip exercise (5%, 15% and 25% of maximum voluntary isometric contraction; MVC) before and after local α- and ß-adrenergic blockade (intra-arterial phentolamine and propranolol). HA reduced ΔFBF (25% MVC: SL: 138.3 ± 47.6 vs. HA: 113.4 ± 37.1 ml min-1 ; P = 0.022) and Δ V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (25% MVC: SL: 20.3 ± 7.5 vs. HA: 14.3 ± 6.2 ml min-1 ; P = 0.014) during exercise. Local adrenoreceptor blockade at HA restored FBF during exercise (25% MVC: SLα-ß blockade : 164.1 ± 71.7 vs. HAα-ß blockade : 185.4 ± 66.6 ml min-1 ; P = 0.947) but resulted in an exaggerated relationship between DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ and V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ( DO2${D}_{{{\rm{O}}}_{\rm{2}}}$ / V̇O2${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ slope: SL: 1.32; HA: slope: 1.86; P = 0.037). These results indicate that tonic adrenergic signalling restrains exercise hyperaemia in lowlanders acclimatizing to HA. The increase in adrenergic restraint is necessary to match oxygen delivery to demand and prevent over perfusion of contracting muscle at HA. KEY POINTS: In exercising skeletal muscle, local vasodilatory signalling and sympathetic vasoconstriction integrate to match oxygen delivery to demand and maintain arterial blood pressure. Exposure to chronic hypoxia (altitude, >4000 m) causes a persistent increase in sympathetic nervous system activity that is associated with impaired functional capacity and diminished vasodilatation during exercise. In healthy male lowlanders exposed to chronic hypoxia (21-28 days; ∼4300 m), local adrenoreceptor blockade (combined α- and ß-adrenergic blockade) restored skeletal muscle blood flow during handgrip exercise. However, removal of tonic adrenergic restraint at high altitude caused an excessive rise in blood flow and subsequently oxygen delivery for any given metabolic demand. This investigation is the first to identify greater adrenergic restraint of blood flow during acclimatization to high altitude and provides evidence of a functional role for this adaptive response in regulating oxygen delivery and demand.


Asunto(s)
Altitud , Hiperemia , Adrenérgicos , Adulto , Fuerza de la Mano/fisiología , Humanos , Hiperemia/metabolismo , Hipoxia , Masculino , Músculo Esquelético/fisiología , Oxígeno/metabolismo , Flujo Sanguíneo Regional/fisiología
19.
Am J Physiol Heart Circ Physiol ; 322(5): H844-H856, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35333117

RESUMEN

Andeans with chronic mountain sickness (CMS) and polycythemia have similar maximal oxygen uptakes to healthy Andeans. Therefore, this study aimed to explore potential adaptations in convective oxygen transport, with a specific focus on sympathetically mediated vasoconstriction of nonactive skeletal muscle. In Andeans with (CMS+, n = 7) and without (CMS-, n = 9) CMS, we measured components of convective oxygen delivery, hemodynamic (arterial blood pressure via intra-arterial catheter), and autonomic responses [muscle sympathetic nerve activity (MSNA)] at rest and during steady-state submaximal cycling exercise [30% and 60% peak power output (PPO) for 5 min each]. Cycling caused similar increases in heart rate, cardiac output, and oxygen delivery at both workloads between both Andean groups. However, at 60% PPO, CMS+ had a blunted reduction in Δtotal peripheral resistance (CMS-, -10.7 ± 3.8 vs. CMS+, -4.9 ± 4.1 mmHg·L-1·min-1; P = 0.012; d = 1.5) that coincided with a greater Δforearm vasoconstriction (CMS-, -0.2 ± 0.6 vs. CMS+, 1.5 ± 1.3 mmHg·mL-1·min-1; P = 0.008; d = 1.7) and a rise in Δdiastolic blood pressure (CMS-, 14.2 ± 7.2 vs. CMS+, 21.6 ± 4.2 mmHg; P = 0.023; d = 1.2) compared with CMS-. Interestingly, although MSNA burst frequency did not change at 30% or 60% of PPO in either group, at 60% Δburst incidence was attenuated in CMS+ (P = 0.028; d = 1.4). These findings indicate that in Andeans with polycythemia, light intensity exercise elicited similar cardiovascular and autonomic responses compared with CMS-. Furthermore, convective oxygen delivery is maintained during moderate-intensity exercise despite higher peripheral resistance. In addition, the elevated peripheral resistance during exercise was not mediated by greater sympathetic neural outflow, thus other neural and/or nonneural factors are perhaps involved.NEW & NOTEWORTHY During submaximal exercise, convective oxygen transport is maintained in Andeans suffering from polycythemia. Light intensity exercise elicited similar cardiovascular and autonomic responses compared with healthy Andeans. However, during moderate-intensity exercise, we observed a blunted reduction in total peripheral resistance, which cannot be ascribed to an exaggerated increase in muscle sympathetic nerve activity, indicating possible contributions from other neural and/or nonneural mechanisms.


Asunto(s)
Mal de Altura , Policitemia , Presión Sanguínea/fisiología , Enfermedad Crónica , Hemodinámica/fisiología , Humanos , Músculo Esquelético/inervación , Oxígeno , Sistema Nervioso Simpático
20.
Int J Sports Med ; 43(2): 161-167, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34265861

RESUMEN

The aim of this study was to analyze climbing performance across two editions of a professional multistage race, and assess the influence of climb category, prior workload, and intensity measures on climbing performance in U23 and professional cyclists. Nine U23 cyclists (age 20.8±0.9 years) and 8 professional cyclists (28.1±3.2 years) participated in this study. Data were divided into four types: overall race performance, climb category, climbing performance metrics (power output, ascent velocity, speed), and workload and intensity measures. Differences in performance metrics and workload and intensity measures between groups were investigated. Power output, ascent velocity, speed were higher in professionals than U23 cyclists for Cat 1 and Cat 2 (p≤0.001-0.016). Workload and intensity measures (Worktotal, Worktotal∙km-1, Elevationgain, eTRIMP and eTRIMP∙km-1) were higher in U23 compared to professionals (p=0.002-0.014). Climbing performance metrics were significantly predicted by prior workload and intensity measures for Cat 1 and 2 (R2=0.27-0.89, p≤0.001-0.030) but not Cat 3. These findings reveal that climbing performance in professional road cycling is influenced by climb categorization as well as prior workload and intensity measures. Combined, these findings suggest that Cat 1 and 2 climbing performance could be predicted from workload and intensity measures.


Asunto(s)
Ciclismo , Metilhistidinas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...