Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8706, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622195

RESUMEN

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Asunto(s)
Carbón Orgánico , Gases de Efecto Invernadero , Oryza , Suelo/química , Calentamiento Global , Agricultura/métodos , Gases de Efecto Invernadero/análisis , Oryza/química , Metano/análisis , Carbono , Óxido Nitroso/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-26513904

RESUMEN

Burkholderia pseudomallei (Bp), the causative agent of melioidosis, is unevenly distributed in the complex soil environment. Physicochemical factors in the soil have been reported to affect microbial communities in the soil. The effect of physicochemical factors on the number and diversity of organisms in the soil has not been reported. Twenty-five each B. pseudomallei-positive and -negative soil samples were collected from a melioidosis-endemic area. The amount of Bp in each soil sample was measured by culture and quantitative PCR (qPCR). The following physicochemical properties from each soil sample were measured: pH, total organic carbon (TOC), total nitrogen (TN), carbon to nitrogen ratio (C:N ratio), exchangeable calcium (EC) and extractable iron (EI). All the physico- chemical properties measured were significantly different between the Bp-positive and -negative soil samples. The Bp-positive soil samples had lower C:N ratios and lower EC and a higher EI (p < 0.05) than the Bp-negative samples. The average pH was lower (3.7-5.0) in the Bp-negative samples. Among the Bp-positive soil samples, the EC was negatively correlated with the PCR copy number. The amount of bacteria detected with the qPCR method was higher than with the culture method, suggesting the presence of unculturable forms of bacteria that might re-grow when the environmental conditions was suitable. A total of 117 Bp isolates obtained from the soil samples were classified into 25 groups using BOX-PCR. The genetic diversity of Bp, did not correlate with the physicochemical factors investigated. A suitable pH range and C:N ratio may be important for the presence of Bp. The EI supports the needs and EC probably alters the growth of Bp. The genetic diversity of the bacteria was not influenced by the soil factors investigated in this study. This information shows the environment conducive to the growth of Bp. This gives us information about how to potentially control or decrease Bp in the soil in the future.


Asunto(s)
Burkholderia pseudomallei/genética , Variación Genética , Microbiología del Suelo , Bacterias , Melioidosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA