Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(13): 3653-3657, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38531047

RESUMEN

Photocatalysis is typically monitored via analysis of phases in isolation and focuses on the removal of a target analyte from the solution phase. Here we analyze the photocatalytic action of a TiO2-nitrogen-doped graphene quantum dot (NGQD) composite on a target analyte, phenol, using comprehensive multiphase NMR (CMP-NMR) which observes signals in solid, solution, and gel phases in situ. Phenol preferentially interacts with the composite photocatalyst compared to pure TiO2, increasing its effective concentration near the catalyst surface and its degradation rate. The presence of NGQDs in the composite reduced the fouling of the catalyst surface and caused a reduction of photogenerated intermediates. Increased heterogeneous interactions, likely mediated by π-π interactions, are hypothesized to cause each of these improvements in the observed photocatalytic performance by TiO2-NGQDs. CMP-NMR allows the elucidation of how the photocatalytic mechanism is enhanced via material design and provides a foundation for the development of efficient photocatalysts.

2.
Nanoscale ; 15(6): 2788-2797, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36661891

RESUMEN

A series of titanium dioxide-nitrogen doped graphene quantum dot (TiO2-NGQD) composite photocatalysts were synthesized through a simple hydrothermal reaction with varied NGQD content. Through a proposed Z-Scheme heterojunction, the composites were able to achieve increased photocurrent generation and photocatalytic degradation of phenol under both full spectrum and visible only illumination. The prepared composites were able to switch from anodic to cathodic photocurrent by changing the light source from full spectrum to visible wavelengths. The photocatalytic capabilities of the composites were tested by degrading phenol and this was monitored via nuclear magnetic resonance. All composites outperformed the commercial standard P25 TiO2 under both full spectrum and visible irradiation, with the 8 wt% NGQD composite showing a visible improvement of over 600% compared to P25. With the ability to manipulate the generation of majority charge carriers, TiO2-NGQDs have significant potential not only in photocatalysis, but in far reaching applications such as energy harvesting and water splitting.

3.
Nanoscale ; 14(27): 9869-9876, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35775921

RESUMEN

Comprehensive Multiphase NMR (CMP-NMR) is a recently developed technique capable of simultaneously observing different phases - solutions, gels, and solids - while providing the chemical specificity of traditional NMR. With this new tool, the heterogeneous photocatalysis of phenol by titanium dioxide (P25 TiO2) is re-examined to gain information about the occurrence of reaction at different regions between the catalyst and the solution. It was found that the proportion of phenol in different phases changes over the course of the photodegradation period. The photocatalyst appears to preferentially degrade phenol molecules that are weakly associated with the surface, such that they have restricted mobility in a 'gel-like' state. Diffusion Ordered Spectroscopy (DOSY) corroborates the relative change in phenol signals between freely diffusing solution and diffusion restricted gels as measured using CMP-NMR. The surface of P25 TiO2 was found to foul over the course of the 200-hour photodegradation period that was monitored using the solid-state capabilities of the CMP-NMR. Finally, CMP-NMR showed differences in the photodegradation of phenol by P25 TiO2 to that of a TiO2-nitrogen doped graphene quantum dot (NGQD) composite. With the latter composite, no fouling of the surface was seen over time. This application of CMP-NMR to the field of catalysis demonstrates its potential to better understand and study photocatalytic systems in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...