Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Syst Neurosci ; 17: 1148604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266394

RESUMEN

Introduction: The extinction of fear memories is an important component in regulating defensive behaviors, contributing toward adaptive processes essential for survival. The cerebellar medial nucleus (MCN) has bidirectional connections with the ventrolateral periaqueductal gray (vlPAG) and is implicated in the regulation of multiple aspects of fear, such as conditioned fear learning and the expression of defensive motor outputs. However, it is unclear how communication between the MCN and vlPAG changes during conditioned fear extinction. Methods: We use dynamic causal models (DCMs) to infer effective connectivity between the MCN and vlPAG during auditory cue-conditioned fear retrieval and extinction in the rat. DCMs determine causal relationships between neuronal sources by using neurobiologically motivated models to reproduce the dynamics of post-synaptic potentials generated by synaptic connections within and between brain regions. Auditory event related potentials (ERPs) during the conditioned tone offset were recorded simultaneously from MCN and vlPAG and then modeled to identify changes in the strength of the synaptic inputs between these brain areas and the relationship to freezing behavior across extinction trials. The DCMs were structured to model evoked responses to best represent conditioned tone offset ERPs and were adapted to represent PAG and cerebellar circuitry. Results: With the use of Parametric Empirical Bayesian (PEB) analysis we found that the strength of the information flow, mediated through enhanced synaptic efficacy from MCN to vlPAG was inversely related to freezing during extinction, i.e., communication from MCN to vlPAG increased with extinction. Discussion: The results are consistent with the cerebellum contributing to predictive processes that underpin fear extinction.

2.
Front Syst Neurosci ; 17: 1166166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152612

RESUMEN

The role of the cerebellum in emotional control has gained increasing interest, with studies showing it is involved in fear learning and memory in both humans and rodents. This review will focus on the contributions of the cerebellum to the extinction of learned fear responses. Extinction of fearful memories is critical for adaptive behaviour, and is clinically relevant to anxiety disorders such as post-traumatic stress disorder, in which deficits in extinction processes are thought to occur. We present evidence that supports cerebellar involvement in fear extinction, from rodent studies that investigate molecular mechanisms and functional connectivity with other brain regions of the known fear extinction network, to fMRI studies in humans. This evidence is considered in relation to the theoretical framework that the cerebellum is involved in the formation and updating of internal models of the inner and outer world by detecting errors between predicted and actual outcomes. In the case of fear conditioning, these internal models are thought to predict the occurrence of an aversive unconditioned stimulus (US), and when the aversive US is unexpectedly omitted during extinction learning the cerebellum uses prediction errors to update the internal model. Differences between human and rodent studies are highlighted to help inform future work.

3.
Cerebellum ; 18(2): 266-286, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30259343

RESUMEN

Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.


Asunto(s)
Cerebelo/fisiología , Percepción del Tiempo/fisiología , Animales , Cerebelo/fisiopatología , Humanos , Neuronas/fisiología
4.
J Neurosci ; 36(30): 7841-51, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27466330

RESUMEN

UNLABELLED: Pathways arising from the periphery that target the inferior olive [spino-olivocerebellar pathways (SOCPs)] are a vital source of information to the cerebellum and are modulated (gated) during active movements. This limits their ability to forward signals to climbing fibers in the cerebellar cortex. We tested the hypothesis that the temporal pattern of gating is related to the predictability of a sensory signal. Low-intensity electrical stimulation of the ipsilateral hindlimb in awake rats evoked field potentials in the C1 zone in the copula pyramidis of the cerebellar cortex. Responses had an onset latency of 12.5 ± 0.3 ms and were either short or long duration (8.7 ± 0.1 vs 31.2 ± 0.3 ms, respectively). Both types of response were shown to be mainly climbing fiber in origin and therefore evoked by transmission in hindlimb SOCPs. Changes in response size (area of field, millivolts per millisecond) were used to monitor differences in transmission during rest and three phases of rearing: phase 1, rearing up; phase 2, upright; and phase 3, rearing down. Responses evoked during phase 2 were similar in size to rest but were smaller during phases 1 and 3, i.e., transmission was reduced during active movement when self-generated (predictable) sensory signals from the hindlimbs are likely to occur. To test whether the pattern of gating was related to the predictability of the sensory signal, some animals received the hindlimb stimulation only during phase 2. Over ∼10 d, the responses became progressively smaller in size, consistent with gating-out transmission of predictable sensory signals relayed via SOCPs. SIGNIFICANCE STATEMENT: A major route for peripheral information to gain access to the cerebellum is via ascending climbing fiber pathways. During active movements, gating of transmission in these pathways controls when climbing fiber signals can modify cerebellar activity. We investigated this phenomenon in rats during their exploratory behavior of rearing. During rearing up and down, transmission was reduced at a time when self-generated, behaviorally irrelevant (predictable) signals occur. However, during the upright phase of rearing, transmission was increased when behaviorally relevant (unpredictable) signals may occur. When the peripheral stimulation was delivered only during the upright phase, so its occurrence became predictable over time, transmission was reduced. Therefore, the results indicate that the gating is related to the level of predictability of a sensory signal.


Asunto(s)
Vías Aferentes/fisiología , Cerebelo/fisiología , Conducta Exploratoria/fisiología , Vías Nerviosas/fisiología , Núcleo Olivar/fisiología , Sensación/fisiología , Animales , Retroalimentación Fisiológica/fisiología , Masculino , Inhibición Neural/fisiología , Neuronas Aferentes/fisiología , Ratas , Ratas Wistar
5.
J Neurosci ; 35(42): 14132-47, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26490855

RESUMEN

The periaqueductal gray (PAG) coordinates behaviors essential to survival, including striking changes in movement and posture (e.g., escape behaviors in response to noxious stimuli vs freezing in response to fear-evoking stimuli). However, the neural circuits underlying the expression of these behaviors remain poorly understood. We demonstrate in vivo in rats that activation of the ventrolateral PAG (vlPAG) affects motor systems at multiple levels of the neuraxis through the following: (1) differential control of spinal neurons that forward sensory information to the cerebellum via spino-olivo-cerebellar pathways (nociceptive signals are reduced while proprioceptive signals are enhanced); (2) alterations in cerebellar nuclear output as revealed by changes in expression of Fos-like immunoreactivity; and (3) regulation of spinal reflex circuits, as shown by an increase in α-motoneuron excitability. The capacity to coordinate sensory and motor functions is demonstrated in awake, behaving rats, in which natural activation of the vlPAG in fear-conditioned animals reduced transmission in spino-olivo-cerebellar pathways during periods of freezing that were associated with increased muscle tone and thus motor outflow. The increase in spinal motor reflex excitability and reduction in transmission of ascending sensory signals via spino-olivo-cerebellar pathways occurred simultaneously. We suggest that the interactions revealed in the present study between the vlPAG and sensorimotor circuits could form the neural substrate for survival behaviors associated with vlPAG activation. SIGNIFICANCE STATEMENT: Neural circuits that coordinate survival behaviors remain poorly understood. We demonstrate in rats that the periaqueductal gray (PAG) affects motor systems at the following multiple levels of the neuraxis: (1) through altering transmission in spino-olivary pathways that forward sensory signals to the cerebellum, reducing and enhancing transmission of nociceptive and proprioceptive information, respectively; (2) by alterations in cerebellar output; and (3) through enhancement of spinal motor reflex pathways. The sensory and motor effects occurred at the same time and were present in both anesthetized animals and behavioral experiments in which fear conditioning naturally activated the PAG. The results provide insights into the neural circuits that enable an animal to be ready and able to react to danger, thus assisting in survival.


Asunto(s)
Vías Aferentes/fisiología , Vías Eferentes/fisiología , Sustancia Gris Periacueductal/fisiología , Animales , Cerebelo/fisiología , Condicionamiento Psicológico , Estimulación Eléctrica , Potenciales Evocados/fisiología , Potenciales Evocados Motores/fisiología , Miedo , Reflejo H , Miembro Posterior/fisiología , Masculino , Proteínas Oncogénicas v-fos/metabolismo , Técnicas de Placa-Clamp , Sustancia Gris Periacueductal/citología , Estimulación Física , Células del Asta Posterior/fisiología , Ratas , Ratas Wistar , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA