Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell Genom ; 4(2): 100484, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232733

RESUMEN

The epigenetic landscape of cancer is regulated by many factors, but primarily it derives from the underlying genome sequence. Chromothripsis is a catastrophic localized genome shattering event that drives, and often initiates, cancer evolution. We characterized five esophageal adenocarcinoma organoids with chromothripsis using long-read sequencing and transcriptome and epigenome profiling. Complex structural variation and subclonal variants meant that haplotype-aware de novo methods were required to generate contiguous cancer genome assemblies. Chromosomes were assembled separately and scaffolded using haplotype-resolved Hi-C reads, producing accurate assemblies even with up to 900 structural rearrangements. There were widespread differences between the chromothriptic and wild-type copies of chromosomes in topologically associated domains, chromatin accessibility, histone modifications, and gene expression. Differential epigenome peaks were most enriched within 10 kb of chromothriptic structural variants. Alterations in transcriptome and higher-order chromosome organization frequently occurred near differential epigenetic marks. Overall, chromothripsis reshapes gene regulation, causing coordinated changes in epigenetic landscape, transcription, and chromosome conformation.


Asunto(s)
Adenocarcinoma , Cromotripsis , Neoplasias Esofágicas , Humanos , Haplotipos , Cromatina , Genoma , Adenocarcinoma/genética
2.
Nat Genet ; 55(11): 1892-1900, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884686

RESUMEN

Somatic mutations are hypothesized to play a role in many non-neoplastic diseases. We performed whole-exome sequencing of 1,182 microbiopsies dissected from lesional and nonlesional epidermis from 111 patients with psoriasis to search for evidence that somatic mutations in keratinocytes may influence the disease process. Lesional skin remained highly polyclonal, showing no evidence of large-scale spread of clones carrying potentially pathogenic mutations. The mutation rate of keratinocytes was similarly only modestly affected by the disease. We found evidence of positive selection in previously reported driver genes NOTCH1, NOTCH2, TP53, FAT1 and PPM1D and also identified mutations in four genes (GXYLT1, CHEK2, ZFP36L2 and EEF1A1) that we hypothesize are selected for in squamous epithelium irrespective of disease status. Finally, we describe a mutational signature of psoralens-a class of chemicals previously found in some sunscreens and which are used as part of PUVA (psoralens and ultraviolet-A) photochemotherapy treatment for psoriasis.


Asunto(s)
Furocumarinas , Psoriasis , Humanos , Ficusina/uso terapéutico , Terapia PUVA , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Psoriasis/patología , Furocumarinas/uso terapéutico , Mutación
3.
Cell Rep ; 42(7): 112800, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37453066

RESUMEN

The human placenta exhibits a unique genomic architecture with an unexpectedly high mutation burden and many uniquely expressed genes. The aim of this study is to identify transcripts that are uniquely absent or depleted in the placenta. Here, we show that 40 of 46 of the other organs have no selectively depleted transcripts and that, of the remaining six, the liver has the largest number, with 26. In contrast, the term placenta has 762 depleted transcripts. Gene Ontology analysis of this depleted set highlighted multiple pathways reflecting known unique elements of placental physiology. For example, transcripts associated with neuronal function are in the depleted set-as expected given the lack of placental innervation. However, this demonstrated overrepresentation of genes involved in mitochondrial function (p = 5.8 × 10-10), including PGC-1α, the master regulator of mitochondrial biogenesis, and genes involved in polyamine metabolism (p = 2.1 × 10-4).


Asunto(s)
Placenta , Transcriptoma , Humanos , Embarazo , Femenino , Placenta/metabolismo , Transcriptoma/genética , Perfilación de la Expresión Génica , Mitocondrias/metabolismo
5.
Cancer Cell ; 40(12): 1583-1599.e10, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36423636

RESUMEN

Tumor behavior is intricately dependent on the oncogenic properties of cancer cells and their multi-cellular interactions. To understand these dependencies within the wider microenvironment, we studied over 270,000 single-cell transcriptomes and 100 microdissected whole exomes from 12 patients with kidney tumors, prior to validation using spatial transcriptomics. Tissues were sampled from multiple regions of the tumor core, the tumor-normal interface, normal surrounding tissues, and peripheral blood. We find that the tissue-type location of CD8+ T cell clonotypes largely defines their exhaustion state with intra-tumoral spatial heterogeneity that is not well explained by somatic heterogeneity. De novo mutation calling from single-cell RNA-sequencing data allows us to broadly infer the clonality of stromal cells and lineage-trace myeloid cell development. We report six conserved meta-programs that distinguish tumor cell function, and find an epithelial-mesenchymal transition meta-program highly enriched at the tumor-normal interface that co-localizes with IL1B-expressing macrophages, offering a potential therapeutic target.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Transcriptoma , Perfilación de la Expresión Génica , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Transición Epitelial-Mesenquimal , Microambiente Tumoral/genética , Análisis de la Célula Individual
6.
Nature ; 604(7906): 517-524, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418684

RESUMEN

The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans1-7. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans8, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined-including variation of around 30-fold in lifespan and around 40,000-fold in body mass-the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.


Asunto(s)
Longevidad , Tasa de Mutación , Animales , Humanos , Longevidad/genética , Mamíferos/genética , Mutagénesis/genética , Mutación
7.
Nat Genet ; 53(10): 1434-1442, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34594041

RESUMEN

Mutation accumulation in somatic cells contributes to cancer development and is proposed as a cause of aging. DNA polymerases Pol ε and Pol δ replicate DNA during cell division. However, in some cancers, defective proofreading due to acquired POLE/POLD1 exonuclease domain mutations causes markedly elevated somatic mutation burdens with distinctive mutational signatures. Germline POLE/POLD1 mutations cause familial cancer predisposition. Here, we sequenced normal tissue and tumor DNA from individuals with germline POLE/POLD1 mutations. Increased mutation burdens with characteristic mutational signatures were found in normal adult somatic cell types, during early embryogenesis and in sperm. Thus human physiology can tolerate ubiquitously elevated mutation burdens. Except for increased cancer risk, individuals with germline POLE/POLD1 mutations do not exhibit overt features of premature aging. These results do not support a model in which all features of aging are attributable to widespread cell malfunction directly resulting from somatic mutation burdens accrued during life.


Asunto(s)
ADN Polimerasa III/genética , ADN Polimerasa II/genética , Mutación de Línea Germinal/genética , Adolescente , Adulto , Anciano , Desarrollo Embrionario/genética , Genoma Humano/genética , Humanos , Neoplasias Intestinales/patología , Intestinos/patología , Persona de Mediana Edad , Mutagénesis/genética , Filogenia , Células Madre/patología , Adulto Joven
8.
Nature ; 597(7876): 387-392, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433963

RESUMEN

Starting from the zygote, all cells in the human body continuously acquire mutations. Mutations shared between different cells imply a common progenitor and are thus naturally occurring markers for lineage tracing1,2. Here we reconstruct extensive phylogenies of normal tissues from three adult individuals using whole-genome sequencing of 511 laser capture microdissections. Reconstructed embryonic progenitors in the same generation of a phylogeny often contribute to different extents to the adult body. The degree of this asymmetry varies between individuals, with ratios between the two reconstructed daughter cells of the zygote ranging from 60:40 to 93:7. Asymmetries pervade subsequent generations and can differ between tissues in the same individual. The phylogenies resolve the spatial embryonic patterning of tissues, revealing contiguous patches of, on average, 301 crypts in the adult colonic epithelium derived from a most recent embryonic cell and also a spatial effect in brain development. Using data from ten additional men, we investigated the developmental split between soma and germline, with results suggesting an extraembryonic contribution to primordial germ cells. This research demonstrates that, despite reaching the same ultimate tissue patterns, early bottlenecks and lineage commitments lead to substantial variation in embryonic patterns both within and between individuals.


Asunto(s)
Linaje de la Célula/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Mutación , Encéfalo/metabolismo , Cromosomas Humanos Y/genética , Células Clonales/metabolismo , Mutación de Línea Germinal/genética , Humanos , Masculino , Mosaicismo , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple/genética
9.
Elife ; 102021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34387545

RESUMEN

Monitoring the spread of SARS-CoV-2 and reconstructing transmission chains has become a major public health focus for many governments around the world. The modest mutation rate and rapid transmission of SARS-CoV-2 prevents the reconstruction of transmission chains from consensus genome sequences, but within-host genetic diversity could theoretically help identify close contacts. Here we describe the patterns of within-host diversity in 1181 SARS-CoV-2 samples sequenced to high depth in duplicate. 95.1% of samples show within-host mutations at detectable allele frequencies. Analyses of the mutational spectra revealed strong strand asymmetries suggestive of damage or RNA editing of the plus strand, rather than replication errors, dominating the accumulation of mutations during the SARS-CoV-2 pandemic. Within- and between-host diversity show strong purifying selection, particularly against nonsense mutations. Recurrent within-host mutations, many of which coincide with known phylogenetic homoplasies, display a spectrum and patterns of purifying selection more suggestive of mutational hotspots than recombination or convergent evolution. While allele frequencies suggest that most samples result from infection by a single lineage, we identify multiple putative examples of co-infection. Integrating these results into an epidemiological inference framework, we find that while sharing of within-host variants between samples could help the reconstruction of transmission chains, mutational hotspots and rare cases of superinfection can confound these analyses.


The COVID-19 pandemic has had major health impacts across the globe. The scientific community has focused much attention on finding ways to monitor how the virus responsible for the pandemic, SARS-CoV-2, spreads. One option is to perform genetic tests, known as sequencing, on SARS-CoV-2 samples to determine the genetic code of the virus and to find any differences or mutations in the genes between the viral samples. Viruses mutate within their hosts and can develop into variants that are able to more easily transmit between hosts. Genetic sequencing can reveal how genetically similar two SARS-CoV-2 samples are. But tracking how SARS-CoV-2 moves from one person to the next through sequencing can be tricky. Even a sample of SARS-CoV-2 viruses from the same individual can display differences in their genetic material or within-host variants. Could genetic testing of within-host variants shed light on factors driving SARS-CoV-2 to evolve in humans? To get to the bottom of this, Tonkin-Hill, Martincorena et al. probed the genetics of SARS-CoV-2 within-host variants using 1,181 samples. The analyses revealed that 95.1% of samples contained within-host variants. A number of variants occurred frequently in many samples, which were consistent with mutational hotspots in the SARS-CoV-2 genome. In addition, within-host variants displayed mutation patterns that were similar to patterns found between infected individuals. The shared within-host variants between samples can help to reconstruct transmission chains. However, the observed mutational hotspots and the detection of multiple strains within an individual can make this challenging. These findings could be used to help predict how SARS-CoV-2 evolves in response to interventions such as vaccines. They also suggest that caution is needed when using information on within-host variants to determine transmission between individuals.


Asunto(s)
COVID-19/genética , COVID-19/fisiopatología , Variación Genética , Genoma Viral , Interacciones Huésped-Patógeno/genética , Mutación , SARS-CoV-2/genética , Secuencia de Bases , Humanos , Pandemias , Filogenia
10.
Nature ; 593(7859): 405-410, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33911282

RESUMEN

Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.


Asunto(s)
Células Sanguíneas/metabolismo , Diferenciación Celular/genética , Análisis Mutacional de ADN/métodos , Músculo Liso/metabolismo , Mutación , Neuronas/metabolismo , Imagen Individual de Molécula/métodos , Células Madre/metabolismo , Enfermedad de Alzheimer/genética , Células Sanguíneas/citología , División Celular , Estudios de Cohortes , Colon/citología , Epitelio/metabolismo , Granulocitos/citología , Granulocitos/metabolismo , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Músculo Liso/citología , Mutagénesis , Tasa de Mutación , Neuronas/citología , Células Madre/citología
11.
Cell Rep Med ; 2(12): 100472, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35028613

RESUMEN

Understanding the molecular determinants that underpin the clinical heterogeneity of non-muscle-invasive bladder cancer (NMIBC) is essential for prognostication and therapy development. Stage T1 disease in particular presents a high risk of progression and requires improved understanding. We present a detailed multi-omics study containing gene expression, copy number, and mutational profiles that show relationships to immune infiltration, disease recurrence, and progression to muscle invasion. We compare expression and genomic subtypes derived from all NMIBCs with those derived from the individual disease stages Ta and T1. We show that sufficient molecular heterogeneity exists within the separate stages to allow subclassification and that this is more clinically meaningful for stage T1 disease than that derived from all NMIBCs. This provides improved biological understanding and identifies subtypes of T1 tumors that may benefit from chemo- or immunotherapy.


Asunto(s)
Perfilación de la Expresión Génica , Músculos/patología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación/genética , Mycobacterium bovis , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , PPAR gamma/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología
12.
Nat Protoc ; 16(2): 841-871, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33318691

RESUMEN

Somatic mutations accumulate in healthy tissues as we age, giving rise to cancer and potentially contributing to ageing. To study somatic mutations in non-neoplastic tissues, we developed a series of protocols to sequence the genomes of small populations of cells isolated from histological sections. Here, we describe a complete workflow that combines laser-capture microdissection (LCM) with low-input genome sequencing, while circumventing the use of whole-genome amplification (WGA). The protocol is subdivided broadly into four steps: tissue processing, LCM, low-input library generation and mutation calling and filtering. The tissue processing and LCM steps are provided as general guidelines that might require tailoring based on the specific requirements of the study at hand. Our protocol for low-input library generation uses enzymatic rather than acoustic fragmentation to generate WGA-free whole-genome libraries. Finally, the mutation calling and filtering strategy has been adapted from previously published protocols to account for artifacts introduced via library creation. To date, we have used this workflow to perform targeted and whole-genome sequencing of small populations of cells (typically 100-1,000 cells) in thousands of microbiopsies from a wide range of human tissues. The low-input DNA protocol is designed to be compatible with liquid handling platforms and make use of equipment and expertise standard to any core sequencing facility. However, obtaining low-input DNA material via LCM requires specialized equipment and expertise. The entire protocol from tissue reception through whole-genome library generation can be accomplished in as little as 1 week, although 2-3 weeks would be a more typical turnaround time.


Asunto(s)
Captura por Microdisección con Láser/métodos , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos , ADN/genética , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación/genética , Flujo de Trabajo
13.
Science ; 370(6512): 75-82, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33004514

RESUMEN

The extent of somatic mutation and clonal selection in the human bladder remains unknown. We sequenced 2097 bladder microbiopsies from 20 individuals using targeted (n = 1914 microbiopsies), whole-exome (n = 655), and whole-genome (n = 88) sequencing. We found widespread positive selection in 17 genes. Chromatin remodeling genes were frequently mutated, whereas mutations were absent in several major bladder cancer genes. There was extensive interindividual variation in selection, with different driver genes dominating the clonal landscape across individuals. Mutational signatures were heterogeneous across clones and individuals, which suggests differential exposure to mutagens in the urine. Evidence of APOBEC mutagenesis was found in 22% of the microbiopsies. Sequencing multiple microbiopsies from five patients with bladder cancer enabled comparisons with cancer-free individuals and across histological features. This study reveals a rich landscape of mutational processes and selection in normal urothelium with large heterogeneity across clones and individuals.


Asunto(s)
Genes Relacionados con las Neoplasias , Mutagénesis , Selección Genética , Neoplasias de la Vejiga Urinaria/genética , Vejiga Urinaria/patología , Urotelio/patología , Desaminasas APOBEC/genética , Adulto , Anciano , Biopsia , Ensamble y Desensamble de Cromatina/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutágenos/análisis , Mutación
14.
Science ; 362(6417): 911-917, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30337457

RESUMEN

The extent to which cells in normal tissues accumulate mutations throughout life is poorly understood. Some mutant cells expand into clones that can be detected by genome sequencing. We mapped mutant clones in normal esophageal epithelium from nine donors (age range, 20 to 75 years). Somatic mutations accumulated with age and were caused mainly by intrinsic mutational processes. We found strong positive selection of clones carrying mutations in 14 cancer genes, with tens to hundreds of clones per square centimeter. In middle-aged and elderly donors, clones with cancer-associated mutations covered much of the epithelium, with NOTCH1 and TP53 mutations affecting 12 to 80% and 2 to 37% of cells, respectively. Unexpectedly, the prevalence of NOTCH1 mutations in normal esophagus was several times higher than in esophageal cancers. These findings have implications for our understanding of cancer and aging.


Asunto(s)
Envejecimiento/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Esófago/patología , Selección Genética , Adulto , Anciano , Células Clonales/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Receptor Notch1/genética , Proteína p53 Supresora de Tumor/genética , Adulto Joven
15.
PLoS One ; 13(3): e0194630, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29547634

RESUMEN

INTRODUCTION: Detection and monitoring of circulating tumor DNA (ctDNA) is rapidly becoming a diagnostic, prognostic and predictive tool in cancer patient care. A growing number of gene targets have been identified as diagnostic or actionable, requiring the development of reliable technology that provides analysis of multiple genes in parallel. We have developed the InVision™ liquid biopsy platform which utilizes enhanced TAm-Seq™ (eTAm-Seq™) technology, an amplicon-based next generation sequencing method for the identification of clinically-relevant somatic alterations at low frequency in ctDNA across a panel of 35 cancer-related genes. MATERIALS AND METHODS: We present analytical validation of the eTAm-Seq technology across two laboratories to determine the reproducibility of mutation identification. We assess the quantitative performance of eTAm-Seq technology for analysis of single nucleotide variants in clinically-relevant genes as compared to digital PCR (dPCR), using both established DNA standards and novel full-process control material. RESULTS: The assay detected mutant alleles down to 0.02% AF, with high per-base specificity of 99.9997%. Across two laboratories, analysis of samples with optimal amount of DNA detected 94% mutations at 0.25%-0.33% allele fraction (AF), with 90% of mutations detected for samples with lower amounts of input DNA. CONCLUSIONS: These studies demonstrate that eTAm-Seq technology is a robust and reproducible technology for the identification and quantification of somatic mutations in circulating tumor DNA, and support its use in clinical applications for precision medicine.


Asunto(s)
Biomarcadores de Tumor/análisis , Ácidos Nucleicos Libres de Células/análisis , Análisis Mutacional de ADN/métodos , Mutación , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/patología , Adulto , Alelos , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/análisis , ADN de Neoplasias/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biopsia Líquida/métodos , Masculino , Células Neoplásicas Circulantes/química , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Acta Neuropathol Commun ; 3: 86, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26682910

RESUMEN

INTRODUCTION: Pilocytic astrocytomas are slow-growing tumors that usually occur in the cerebellum or in the midline along the hypothalamic/optic pathways. The most common genetic alterations in pilocytic astrocytomas activate the ERK/MAPK signal transduction pathway, which is a major driver of proliferation but is also believed to induce senescence in these tumors. Here, we have conducted a detailed investigation of microRNA and gene expression, together with pathway analysis, to improve our understanding of the regulatory mechanisms in pilocytic astrocytomas. RESULTS: Pilocytic astrocytomas were found to have distinctive microRNA and gene expression profiles compared to normal brain tissue and a selection of other pediatric brain tumors. Several microRNAs found to be up-regulated in pilocytic astrocytomas are predicted to target the ERK/MAPK and NF-κB signaling pathways as well as genes involved in senescence-associated inflammation and cell cycle control. Furthermore, IGFBP7 and CEBPB, which are transcriptional inducers of the senescence-associated secretory phenotype (SASP), were also up-regulated together with the markers of senescence and inflammation, CDKN1A (p21), CDKN2A (p16) and IL1B. CONCLUSION: These findings provide further evidence of a senescent phenotype in pilocytic astrocytomas. In addition, they suggest that the ERK/MAPK pathway, which is considered the major driver of these tumors, is regulated not only by genetic aberrations but also by microRNAs.


Asunto(s)
Astrocitoma/genética , Astrocitoma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , MicroARNs/metabolismo , Transducción de Señal/efectos de los fármacos , Adolescente , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Transducción de Señal/genética
17.
Genome Res ; 21(4): 505-14, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21393386

RESUMEN

Gene fusions involving members of the RAF family of protein kinases have recently been identified as characteristic aberrations of low-grade astrocytomas, the most common tumors of the central nervous system in children. While it has been shown that these fusions cause constitutive activation of the ERK/MAPK pathway, very little is known about their formation. Here, we present a detailed analysis of RAF gene fusion breakpoints from a well-characterized cohort of 43 low-grade astrocytomas. Our findings show that the rearrangements that generate these RAF gene fusions may be simple or complex and that both inserted nucleotides and microhomology are common at the DNA breakpoints. Furthermore, we identify novel enrichment of microhomologous sequences in the regions immediately flanking the breakpoints. We thus provide evidence that the tandem duplications responsible for these fusions are generated by microhomology-mediated break-induced replication (MMBIR). Although MMBIR has previously been implicated in the pathogenesis of other diseases and the evolution of eukaryotic genomes, we demonstrate here that the proposed details of MMBIR are consistent with a recurrent rearrangement in cancer. Our analysis of repetitive elements, Z-DNA and sequence motifs in the fusion partners identified significant enrichment of the human minisatellite conserved sequence/χ-like element at one side of the breakpoint. Therefore, in addition to furthering our understanding of low-grade astrocytomas, this study provides insights into the molecular mechanistic details of MMBIR and the sequence of events that occur in the formation of genomic rearrangements.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Puntos de Rotura del Cromosoma , Fusión Génica/genética , Quinasas raf/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Replicación del ADN/genética , Orden Génico , Reordenamiento Génico/genética , Humanos , Lactante , Masculino , Repeticiones de Minisatélite , Modelos Genéticos , Datos de Secuencia Molecular , Alineación de Secuencia , Adulto Joven
19.
J Cell Physiol ; 222(3): 509-14, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19937730

RESUMEN

Low-grade astrocytomas (LGAs) are the most common type of brain tumor in children. Until recently, very little was known about the underlying biology and molecular genetics of these tumors. However, within the past year a number of studies have shown that the MAPK pathway is constitutively activated in a high proportion of LGAs. Several genetic aberrations which generate this deregulation of the MAPK pathway have been identified, most notably gene fusions between KIAA1549 and BRAF. In this review we summarize these findings, discuss how these gene fusions may arise and consider possible implications for diagnosis and treatment.


Asunto(s)
Astrocitoma/enzimología , Neoplasias Encefálicas/enzimología , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Adolescente , Astrocitoma/genética , Astrocitoma/patología , Astrocitoma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Niño , Preescolar , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Fusión Génica , Humanos , Lactante , Recién Nacido , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
20.
J Pathol ; 218(2): 172-81, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19373855

RESUMEN

We report genetic aberrations that activate the ERK/MAP kinase pathway in 100% of posterior fossa pilocytic astrocytomas, with a high frequency of gene fusions between KIAA1549 and BRAF among these tumours. These fusions were identified from analysis of focal copy number gains at 7q34, detected using Affymetrix 250K and 6.0 SNP arrays. PCR and sequencing confirmed the presence of five KIAA1549-BRAF fusion variants, along with a single fusion between SRGAP3 and RAF1. The resulting fusion genes lack the auto-inhibitory domains of BRAF and RAF1, which are replaced in-frame by the beginning of KIAA1549 and SRGAP3, respectively, conferring constitutive kinase activity. An activating mutation of KRAS was identified in the single pilocytic astrocytoma without a BRAF or RAF1 fusion. Further fusions and activating mutations in BRAF were identified in 28% of grade II astrocytomas, highlighting the importance of the ERK/MAP kinase pathway in the development of paediatric low-grade gliomas.


Asunto(s)
Astrocitoma/enzimología , Neoplasias Encefálicas/enzimología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Adolescente , Adulto , Astrocitoma/genética , Neoplasias Encefálicas/genética , Niño , Preescolar , Análisis Mutacional de ADN , ADN Complementario/análisis , Activación Enzimática , Proteínas Activadoras de GTPasa/genética , Humanos , Lactante , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-raf/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...