Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1354561, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562561

RESUMEN

Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.

2.
Plant Signal Behav ; 19(1): 2341506, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38607960

RESUMEN

Sugar signaling forms the basis of metabolic activities crucial for an organism to perform essential life activities. In plants, sugars like glucose, mediate a wide range of physiological responses ranging from seed germination to cell senescence. This has led to the elucidation of cell signaling pathways involving glucose and its counterparts and the mechanism of how these sugars take control over major hormonal pathways such as auxin, ethylene, abscisic acid and cytokinin in Arabidopsis. Plants use HXK1(Hexokinase) as a glucose sensor to modulate changes in photosynthetic gene expression in response to high glucose levels. Other proteins such as SIZ1, a major SUMO E3 ligase have recently been implicated in controlling sugar responses via transcriptional and translational regulation of a wide array of sugar metabolic genes. Here, we show that these two genes work antagonistically and are epistatic in controlling responsiveness toward high glucose conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glucosa , Ligasas/genética , Desarrollo de la Planta , Ubiquitina-Proteína Ligasas/genética
4.
Front Plant Sci ; 13: 968139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212299

RESUMEN

Besides the long-standing role of cytokinins (CKs) as growth regulators, their current positioning at the interface of development and stress responses is coming into recognition. The current evidence suggests the notion that CKs are involved in heat stress response (HSR), however, the role of CK signaling components is still elusive. In this study, we have identified a role of the CK signaling components type-A Arabidopsis response regulators (ARRs) in HSR in Arabidopsis. The mutants of multiple type-A ARR genes exhibit improved basal and acquired thermotolerance and, altered response to oxidative stress in our physiological analyses. Through proteomics profiling, we show that the type-A arr mutants experience a 'stress-primed' state enabling them to respond more efficiently upon exposure to real stress stimuli. A substantial number of proteins that are involved in the heat-acclimatization process such as the proteins related to cellular redox status and heat shock, are already altered in the type-A arr mutants without a prior exposure to stress conditions. The metabolomics analyses further reveal that the mutants accumulate higher amounts of α-and γ-tocopherols, which are important antioxidants for protection against oxidative damage. Collectively, our results suggest that the type-A ARRs play an important role in heat stress response by affecting the redox homeostasis in Arabidopsis.

5.
J Exp Bot ; 73(20): 7083-7102, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35980748

RESUMEN

In nature, plants cope with adversity and have established strategies that recall past episodes and enable them to better cope with stress recurrences by establishing a 'stress memory'. Emerging evidence suggests that glucose (Glc) and target of rapamycin (TOR), central regulators of plant growth, have remarkable functions in stress adaptation. However, whether TOR modulates a stress memory response is so far unknown. Global transcriptome profiling identified that Glc, through TOR, regulates the expression of numerous genes involved in thermomemory. Priming of TOR overexpressors with mild heat showed better stress endurance, whereas TOR RNAi showed reduced thermomemory. This thermomemory is linked with histone methylation at specific sites of heat stress (HS) genes. TOR promotes long-term accumulation of H3K4me3 on thermomemory-associated gene promoters, even when transcription of those genes reverts to their basal level. Our results suggest that ARABIDOPSIS TRITHORAX 1 (ATX1), an H3K4 methyltransferase already shown to regulate H3K4me3 levels at the promoters of HS recovery genes, is a direct target of TOR signaling. The TOR-activating E2Fa binds to the promoter of ATX1 and regulates its expression, which ultimately regulates thermomemory. Collectively, our findings reveal a mechanistic framework in which Glc-TOR signaling determines the integration of stress and energy signaling to regulate thermomemory.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glucosa/metabolismo , Sirolimus/metabolismo , Respuesta al Choque Térmico/fisiología , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas
6.
J Exp Bot ; 73(20): 7026-7040, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35781571

RESUMEN

Target of rapamycin complex 1 (TORC1) is a highly conserved serine-threonine protein kinase crucial for coordinating growth according to nutrient availability in eukaryotes. It works as a central integrator of multiple nutrient inputs such as sugar, nitrogen, and phosphate and promotes growth and biomass accumulation in response to nutrient sufficiency. Studies, especially in the past decade, have identified the central role of TORC1 in regulating growth through interaction with hormones, photoreceptors, and stress signaling machinery in plants. In this review, we comprehensively analyse the interactome and phosphoproteome of the Arabidopsis TORC1 signaling network. Our analysis highlights the role of TORC1 as a central hub kinase communicating with the transcriptional and translational apparatus, ribosomes, chaperones, protein kinases, metabolic enzymes, and autophagy and stress response machinery to orchestrate growth in response to nutrient signals. This analysis also suggests that along with the conserved downstream components shared with other eukaryotic lineages, plant TORC1 signaling underwent several evolutionary innovations and co-opted many lineage-specific components during. Based on the protein-protein interaction and phosphoproteome data, we also discuss several uncharacterized and unexplored components of the TORC1 signaling network, highlighting potential links for future studies.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia , Plantas/metabolismo , Red Social
7.
Plant Physiol ; 189(4): 2259-2280, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35567489

RESUMEN

Plant adjustment to environmental changes involves complex crosstalk between extrinsic and intrinsic cues. In the past two decades, extensive research has elucidated the key roles of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and the phytohormone auxin in thermomorphogenesis. In this study, we identified a previously unexplored role of jasmonate (JA) signaling components, the Mediator complex, and their integration with auxin signaling during thermomorphogenesis in Arabidopsis (Arabidopsis thaliana). Warm temperature induces expression of JA signaling genes including MYC2, but, surprisingly, this transcriptional activation is not JA dependent. Warm temperature also promotes accumulation of the JA signaling receptor CORONATINE INSENSITIVE1 (COI1) and degradation of the JA signaling repressor JASMONATE-ZIM-DOMAIN PROTEIN9, which probably leads to de-repression of MYC2, enabling it to contribute to the expression of MEDIATOR SUBUNIT17 (MED17). In response to warm temperature, MED17 occupies the promoters of thermosensory genes including PIF4, YUCCA8 (YUC8), INDOLE-3-ACETIC ACID INDUCIBLE19 (IAA19), and IAA29. Moreover, MED17 facilitates enrichment of H3K4me3 on the promoters of PIF4, YUC8, IAA19, and IAA29 genes. Interestingly, both occupancy of MED17 and enrichment of H3K4me3 on these thermomorphogenesis-related promoters are dependent on PIF4 (or PIFs). Altered accumulation of COI1 under warm temperature in the med17 mutant suggests the possibility of a feedback mechanism. Overall, this study reveals the role of the Mediator complex as an integrator of JA and auxin signaling pathways during thermomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Complejo Mediador/metabolismo , Oxilipinas/metabolismo , Transducción de Señal
8.
Cell Rep ; 39(1): 110631, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385724

RESUMEN

TOR kinase is a central coordinator of nutrient-dependent growth in eukaryotes. Maintaining optimal TOR signaling is critical for the normal development of organisms. In this study, we describe a negative feedback loop of TOR signaling helping in the adaptability of plants in changing environmental conditions. Using an interdisciplinary approach, we show that the plant-specific zinc finger protein FLZ8 acts as a regulator of TOR signaling in Arabidopsis. In sugar sufficiency, TOR-dependent and -independent histone modifications upregulate the expression of FLZ8. FLZ8 negatively regulates TOR signaling by promoting antagonistic SnRK1α1 signaling and bridging the interaction of SnRK1α1 with RAPTOR1B, a crucial accessory protein of TOR. This negative feedback loop moderates the TOR-growth signaling axis in the favorable condition and helps in the activation of stress signaling in unfavorable conditions, establishing its importance in the adaptability of plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Retroalimentación Fisiológica , Transducción de Señal , Serina-Treonina Quinasas TOR , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retroalimentación Fisiológica/fisiología , Proteínas de Plantas/metabolismo , Plantas , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
9.
Plant Cell Environ ; 45(5): 1554-1572, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35147228

RESUMEN

The role of jasmonates (JAs) in primary root growth and development and in plant response to external stimuli is already known. However, its role in lateral root (LR) development remains to be explored. Our work identified methyl jasmonate (MeJA) as a key phytohormone in determining the branching angle of Arabidopsis LRs. MeJA inclines the LRs to a more vertical orientation, which was dependent on the canonical JAR1-COI1-MYC2,3,4 signalling. Our work also highlights the dual roles of light in governing LR angle. Light signalling enhances JA biosynthesis, leading to erect root architecture; whereas, glucose (Glc) induces wider branching angles. Combining physiological and molecular assays, we revealed that Glc antagonises the MeJA response via TARGET OF RAPAMYCIN (TOR) signalling. Moreover, physiological assays using auxin mutants, MYC2-mediated transcriptional activation of LAZY2, LAZY4 and auxin biosynthetic gene CYP79B2, and asymmetric distribution of DR5::GFP and PIN2::GFP pinpointed the role of an intact auxin machinery required by MeJA for vertical growth of LRs. We also demonstrated that light perception and signalling are indispensable for inducing vertical angles by MeJA. Thus, our investigation highlights antagonism between light and Glc signalling and how they interact with JA-auxin signals to optimise the branching angle of LRs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas , Glucosa , Ácidos Indolacéticos , Oxilipinas/farmacología , Raíces de Plantas/metabolismo
10.
Physiol Plant ; 174(1): e13546, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34480799

RESUMEN

Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.


Asunto(s)
Ácidos Indolacéticos , Azúcares , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Azúcares/metabolismo
11.
Front Plant Sci ; 12: 741965, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777423

RESUMEN

Global warming exhibits profound effects on plant fitness and productivity. To withstand stress, plants sacrifice their growth and activate protective stress responses for ensuring survival. However, the switch between growth and stress is largely elusive. In the past decade, the role of the target of rapamycin (TOR) linking energy and stress signalling is emerging. Here, we have identified an important role of Glucose (Glc)-TOR signalling in plant adaptation to heat stress (HS). Glc via TOR governs the transcriptome reprogramming of a large number of genes involved in heat stress protection. Downstream to Glc-TOR, the E2Fa signalling module regulates the transcription of heat shock factors through direct recruitment of E2Fa onto their promoter regions. Also, Glc epigenetically regulates the transcription of core HS signalling genes in a TOR-dependent manner. TOR acts in concert with p300/CREB HISTONE ACETYLTRANSFERASE1 (HAC1) and dictates the epigenetic landscape of HS loci to regulate thermotolerance. Arabidopsis plants defective in TOR and HAC1 exhibited reduced thermotolerance with a decrease in the expression of core HS signalling genes. Together, our findings reveal a mechanistic framework in which Glc-TOR signalling through different modules integrates stress and energy signalling to regulate thermotolerance.

12.
Int J Mol Sci ; 22(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073675

RESUMEN

Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.


Asunto(s)
Organogénesis de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Arabidopsis/anatomía & histología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/fisiología , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Plantas/anatomía & histología , Suelo
13.
Plant Physiol ; 180(2): 1081-1100, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30890662

RESUMEN

Induction of heat shock proteins (HSPs) in response to heat stress (HS) is indispensable for conferring thermotolerance. Glc, a fundamental signaling and metabolic molecule, provides energy to stressed seedlings to combat stress. The recovery of stressed plants from detrimental HS in response to Glc is largely mediated by HSPs, but the mechanistic basis of this thermotolerance is not well defined. In this study, we show that Glc has a prominent role in providing thermotolerance. Glc-mediated thermotolerance involves HSP induction via the TARGET OF RAPAMYCIN (TOR)-E2Fa signaling module. Apart from HSPs, TOR-E2Fa also regulates the Arabidopsis (Arabidopsis thaliana) ortholog of human Hikeshi, named HIKESHI-LIKE PROTEIN1 (HLP1). Expression of proHLP1::GUS in the shoot apical meristem (SAM) after HS coincides with TOR-E2Fa expression, substantiating a role for TOR-E2Fa-HLP1 in providing thermotolerance. We also demonstrate that Glc along with heat could induce proliferation activity in the SAM after HS recovery, which was arrested by the TOR inhibitor AZD-8055. Molecular and physiological studies suggest that HS-activated heat stress transcription factor A1s also positively regulate HLP1 transcription, suggesting convergence of the Glc and HS signaling pathways. Loss of functional HLP1 causes HS hypersensitivity, whereas HLP1 overexpressors display increased thermotolerance. HLP1 binds to the promoters of Glc-regulated HS-responsive genes and promotes chromatin acetylation. In addition, Glc modifies the chromatin landscape at thermomemory-related loci by promoting H3K4 trimethylation (H3K4me3). Glc-primed accumulation of H3K4me3 at thermomemory-associated loci is mediated through HLP1. These findings reveal the novel function of Glc-regulated HLP1 in mediating thermotolerance/thermomemory response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Glucosa/farmacología , Proteínas de Unión al ARN/metabolismo , Temperatura , Acetilación , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proliferación Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Sitios Genéticos , Respuesta al Choque Térmico/efectos de los fármacos , Histonas/metabolismo , Mutación con Pérdida de Función , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Desarrollo de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
14.
J Exp Bot ; 70(8): 2239-2259, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30870564

RESUMEN

The target of rapamycin (TOR)-sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) signaling is an ancient regulatory mechanism that originated in eukaryotes to regulate nutrient-dependent growth. Although the TOR-SnRK1 signaling cascade shows highly conserved functions among eukaryotes, studies in the past two decades have identified many important plant-specific innovations in this pathway. Plants also possess SnRK2 and SnRK3 kinases, which originated from the ancient SnRK1-related kinases and have specialized roles in controlling growth, stress responses and nutrient homeostasis in plants. Recently, an integrative picture has started to emerge in which different SnRKs and TOR kinase are highly interconnected to control nutrient and stress responses of plants. Further, these kinases are intimately involved with phytohormone signaling networks that originated at different stages of plant evolution. In this review, we highlight the evolution and divergence of TOR-SnRK signaling components in plants and their communication with each other as well as phytohormone signaling to fine-tune growth and stress responses in plants.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Evolución Biológica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Homeostasis , Filogenia , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Viridiplantae/genética , Viridiplantae/crecimiento & desarrollo , Viridiplantae/fisiología
15.
Plant Signal Behav ; 14(6): 1592535, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30871406

RESUMEN

The TARGET OF RAPAMYCIN-SNF1-RELATED PROTEIN KINASE 1 (TOR-SnRK1) arms race is a key regulator of plant growth in response to energy fluctuations and stress. Recently, we have identified that two members of the FCS-LIKE ZINC FINGER (FLZ) protein family, FLZ6 and 10, repress SnRK1 signaling and thereby involved in the activation of the TARGET OF RAPAMYCIN (TOR) signaling. In this study, we demonstrate that FLZ6 and 10 are also involved in the regulation of osmotic stress responses. Downregulation of FLZ6 and 10 results in enhanced expression of stress-responsive genes and better resilience towards osmotic stress at the seedling stage. These results indicate that FLZ6 and 10 are involved in the regulation of stress mitigation in plants through directly affecting SnRK1 signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Osmorregulación/fisiología , Presión Osmótica/fisiología , Dedos de Zinc , Proteínas Adaptadoras Transductoras de Señales/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética
16.
J Biol Chem ; 293(34): 13134-13150, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29945970

RESUMEN

The SNF1-related protein kinase 1 (SnRK1) is a heterotrimeric eukaryotic kinase that interacts with diverse proteins and regulates their activity in response to starvation and stress signals. Recently, the FCS-like zinc finger (FLZ) proteins were identified as a potential scaffold for SnRK1 in plants. However, the evolutionary and mechanistic aspect of this complex formation is currently unknown. Here, in silico analyses predicted that FLZ proteins possess conserved intrinsically disordered regions (IDRs) with a propensity for protein binding in the N and C termini across the plant lineage. We observed that the Arabidopsis FLZ proteins promiscuously interact with SnRK1 subunits, which formed different isoenzyme complexes. The FLZ domain was essential for mediating the interaction with SnRK1α subunits, whereas the IDRs in the N termini facilitated interactions with the ß and ßγ subunits of SnRK1. Furthermore, the IDRs in the N termini were important for mediating dimerization of different FLZ proteins. Of note, the interaction of FLZ with SnRK1 was confined to cytoplasmic foci, which colocalized with the endoplasmic reticulum. An evolutionary analysis revealed that in general, the IDR-rich regions are under more relaxed selection than the FLZ domain. In summary, the findings in our study reveal the structural details, origin, and evolution of a land plant-specific scaffold of SnRK1 formed by the coordinated actions of IDRs and structured regions in the FLZ proteins. We propose that the FLZ protein complex might be involved in providing flexibility, thus enhancing the binding repertoire of the SnRK1 hub in land plants.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Genoma de Planta , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Fosforilación , Filogenia , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Dedos de Zinc
17.
Plant J ; 94(2): 232-245, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29406622

RESUMEN

SNF1-related protein kinase 1 (SnRK1) is a central regulator of plant growth during energy starvation. The FCS-like zinc finger (FLZ) proteins have recently been identified as adaptor proteins which facilitate the interaction of SnRK1 with other proteins. In this study, we found that two starvation-induced FLZ genes, FLZ6 and FLZ10, work as repressors of SnRK1 signalling. The reduced expression of these genes resulted in an increase in the level of SnRK1α1, which is the major catalytic subunit of SnRK1. This lead to a concomitant increase in phosphorylated protein and SnRK1 activity in the flz6 and flz10 mutants. FLZ6 and FLZ10 specifically interact with SnRK1α subunits in the cytoplasmic foci, which co-localized with the endoplasmic reticulum. In physiological assays, similar to the SnRK1α1 overexpression line, flz mutants showed compromised growth. Further, growth promotion in response to favourable growth conditions was found to be attenuated in the mutants. The enhanced SnRK1 activity in the mutants resulted in a reduction in the level of phosphorylated RIBOSOMAL S6 KINASE and the expression of E2Fa and its targets, indicating that TARGET OF RAPAMYCIN-dependent promotion of protein synthesis and cell cycle progression is impaired. Taken together, this study uncovers a plant-specific modulation of SnRK1 signalling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas de Unión al ADN/fisiología , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal , Factores de Transcripción/fisiología
18.
Sci Rep ; 7(1): 16101, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170398

RESUMEN

Plants possess exuberant plasticity that facilitates its ability to adapt and survive under challenging environmental conditions. The developmental plasticity largely depends upon cellular elongation which is governed by a complex network of environmental and phytohormonal signals. Here, we report role of glucose (Glc) and Glc-regulated factors in controlling elongation growth and shade response in Arabidopsis. Glc controls shade induced hypocotyl elongation in a dose dependent manner. We have identified a Glc repressed factor REGULATED BY SUGAR AND SHADE1 (RSS1) encoding for an atypical basic helix-loop-helix (bHLH) protein of unknown biological function that is required for normal Glc actions. Phenotype analysis of mutant and overexpression lines suggested RSS1 to be a negative regulator of elongation growth. RSS1 affects overall auxin homeostasis. RSS1 interacts with the elongation growth-promoting proteins HOMOLOG OF BEE2 INTERACTING WITH IBH 1 (HBI1) and BR ENHANCED EXPRESSION2 (BEE2) and negatively affects the transcription of their downstream targets such as YUCs, INDOLE-3-ACETIC ACID INDUCIBLE (IAAs), LONG HYPOCOTYL IN FAR-RED1 (HFR1), HOMEOBOX PROTEIN 2 (ATHB2), XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASES (XTHs) and EXPANSINS. We propose, Glc signals might maintain optimal hypocotyl elongation under multiple signals such as light, shade and phytohormones through the central growth regulatory bHLH/HLH module.


Asunto(s)
Arabidopsis/metabolismo , Glucosa/metabolismo , Luz , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Hipocótilo/genética , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal/efectos de la radiación
19.
Front Plant Sci ; 8: 1812, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29118774

RESUMEN

BIG GRAIN1 (BG1) is an auxin-regulated gene which functions in auxin pathway and positively regulates biomass, grain size and yield in rice. However, the evolutionary origin and divergence of these genes are still unknown. In this study, we found that BG genes are probably originated in seed plants. We also identified that seed plants evolved a class of BIG GRAIN LIKE (BGL) genes which share conserved middle and C-terminal motifs with BG. The BG genes were present in all monocot and eudicot species analyzed; however, the BGL genes were absent in few monocot lineages. Both BG and BGL were found to be serine-rich proteins; however, differences in expansion and rates of retention after whole genome duplication events were observed. Promoters of BG and BGL genes were found to be enriched with auxin-responsive elements and the Arabidopsis thaliana BG and BGL genes were found to be auxin-regulated. The auxin-induced expression of AthBG2 was found to be dependent on the conserved ARF17/19 module. Protein-protein interaction analysis identified that AthBG2 interact with regulators of splicing, transcription and chromatin remodeling. Taken together, this study provides interesting insights about BG and BGL genes and incentivizes future work in this gene family which has the potential to be used for crop manipulation.

20.
Front Plant Sci ; 8: 1304, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28798760

RESUMEN

Plants being sessile can often be judged as passive acceptors of their environment. However, plants are actually even more active in responding to the factors from their surroundings. Plants do not have eyes, ears or vestibular system like animals, still they "know" which way is up and which way is down? This is facilitated by receptor molecules within plant which perceive changes in internal and external conditions such as light, touch, obstacles; and initiate signaling pathways that enable the plant to react. Plant responses that involve a definite and specific movement are called "tropic" responses. Perhaps the best known and studied tropisms are phototropism, i.e., response to light, and geotropism, i.e., response to gravity. A robust root system is vital for plant growth as it can provide physical anchorage to soil as well as absorb water, nutrients and essential minerals from soil efficiently. Gravitropic responses of both primary as well as lateral root thus become critical for plant growth and development. The molecular mechanisms of root gravitropism has been delved intensively, however, the mechanism behind how the potential energy of gravity stimulus converts into a biochemical signal in vascular plants is still unknown, due to which gravity sensing in plants still remains one of the most fascinating questions in molecular biology. Communications within plants occur through phytohormones and other chemical substances produced in plants which have a developmental or physiological effect on growth. Here, we review current knowledge of various intrinsic signaling mechanisms that modulate root gravitropism in order to point out the questions and emerging developments in plant directional growth responses. We are also discussing the roles of sugar signals and their interaction with phytohormone machinery, specifically in context of root directional responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...