Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(47): 8058-8072, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37748861

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Recently, genome-wide association studies identified KIF5A as a new ALS-causing gene. KIF5A encodes a protein of the kinesin-1 family, allowing the anterograde transport of cargos along the microtubule rails in neurons. In ALS patients, mutations in the KIF5A gene induce exon 27 skipping, resulting in a mutated protein with a new C-terminal region (KIF5A Δ27). To understand how KIF5A Δ27 underpins the disease, we developed an ALS-associated KIF5A Drosophila model. When selectively expressed in motor neurons, KIF5A Δ27 alters larval locomotion as well as morphology and synaptic transmission at neuromuscular junctions in both males and females. We show that the distribution of mitochondria and synaptic vesicles is profoundly disturbed by KIF5A Δ27 expression. That is consistent with the numerous KIF5A Δ27-containing inclusions observed in motor neuron soma and axons. Moreover, KIF5A Δ27 expression leads to motor neuron death and reduces life expectancy. Our in vivo model reveals that a toxic gain of function underlies the pathogenicity of ALS-linked KIF5A mutant.SIGNIFICANCE STATEMENT Understanding how a mutation identified in patients with amyotrophic lateral sclerosis (ALS) causes the disease and the loss of motor neurons is crucial to fight against this disease. To this end, we have created a Drosophila model based on the motor neuron expression of the KIF5A mutant gene, recently identified in ALS patients. KIF5A encodes a kinesin that allows the anterograde transport of cargos. This model recapitulates the main features of ALS, including alterations of locomotion, synaptic neurotransmission, and morphology at neuromuscular junctions, as well as motor neuron death. KIF5A mutant is found in cytoplasmic inclusions, and its pathogenicity is because of a toxic gain of function.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Masculino , Animales , Femenino , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Estudio de Asociación del Genoma Completo , Enfermedades Neurodegenerativas/metabolismo , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Mutación/genética , Drosophila/metabolismo , Cuerpos de Inclusión/metabolismo
2.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477509

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología
3.
Front Cell Neurosci ; 11: 371, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209177

RESUMEN

The function of the nervous system in complex animals is reflected by the achievement of specific behaviors. For years in Drosophila, both simple and complex behaviors have been studied and their genetic bases have emerged. The neuromuscular junction is maybe one of the prototypal simplest examples. A motor neuron establishes synaptic connections on its muscle cell target and elicits behavior: the muscle contraction. Different muscles in adult fly are related to specific behaviors. For example, the thoracic muscles are associated with flight and the leg muscles are associated with locomotion. However, specific tools are still lacking for the study of cellular physiology in distinct motor neuron subpopulations. Here we decided to use the abdominal muscles and in particular the ventral abdominal muscles (VAMs) in adult Drosophila as new model to link a precise behavior to specific motor neurons. Hence, we developed a new behavioral test based on the folding movement of the adult abdomen. Further, we performed a genetic screen and identify two specific Gal4 lines with restricted expression patterns to the adult motor neurons innervating the VAMs or their precursor cells. Using these genetic tools, we showed that the lack of the VAMs or the loss of the synaptic transmission in their innervating motor neurons lead to a significant impairment of the abdomen folding behavior. Altogether, our results allow establishing a direct link between specific motor neurons and muscles for the realization of particular behavior: the folding behavior of the abdomen in Drosophila.

4.
Dev Biol ; 432(2): 273-285, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29097190

RESUMEN

One way to better understand the molecular mechanisms involved in the construction of a nervous system is to identify the downstream effectors of major regulatory proteins. We previously showed that Engrailed (EN) and Gooseberry-Neuro (GsbN) transcription factors act in partnership to drive the formation of posterior commissures in the central nervous system of Drosophila. In this report, we identified genes regulated by both EN and GsbN through chromatin immunoprecipitation ("ChIP on chip") and transcriptome experiments, combined to a genetic screen relied to the gene dose titration method. The genomic-scale approaches allowed us to define 175 potential targets of EN-GsbN regulation. We chose a subset of these genes to examine ventral nerve cord (VNC) defects and found that half of the mutated targets show clear VNC phenotypes when doubly heterozygous with en or gsbn mutations, or when homozygous. This strategy revealed new groups of genes never described for their implication in the construction of the nerve cord. Their identification suggests that, to construct the nerve cord, EN-GsbN may act at three levels, in: (i) sequential control of the attractive-repulsive signaling that ensures contralateral projection of the commissural axons, (ii) temporal control of the translation of some mRNAs, (iii) regulation of the capability of glial cells to act as commissural guideposts for developing axons. These results illustrate how an early, coordinated transcriptional control may orchestrate the various mechanisms involved in the formation of stereotyped neuronal networks. They also validate the overall strategy to identify genes that play crucial role in axonal pathfinding.


Asunto(s)
Axones/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Inmunoprecipitación de Cromatina/métodos , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genoma , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Mutación , Neuroglía/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Transactivadores/genética , Transactivadores/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
5.
Sci Rep ; 7(1): 16254, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176602

RESUMEN

Microtubules (MTs) play crucial roles during neuronal life. They are formed by heterodimers of alpha and beta-tubulins, which are subjected to several post-translational modifications (PTMs). Amongst them, glutamylation consists in the reversible addition of a variable number of glutamate residues to the C-terminal tails of tubulins. Glutamylation is the most abundant MT PTM in the mammalian adult brain, suggesting that it plays an important role in the nervous system (NS). Here, we show that the previously uncharacterized CG31108 gene encodes an alpha-tubulin glutamylase acting in the Drosophila NS. We show that this glutamylase, which we named DmTTLL5, initiates MT glutamylation specifically on alpha-tubulin, which are the only glutamylated tubulin in the Drosophila brain. In DmTTLL5 mutants, MT glutamylation was not detected in the NS, allowing for determining its potential function. DmTTLL5 mutants are viable and we did not find any defect in vesicular axonal transport, synapse morphology and larval locomotion. Moreover, DmTTLL5 mutant flies display normal negative geotaxis behavior and their lifespan is not altered. Thus, our work identifies DmTTLL5 as the major enzyme responsible for initiating neuronal MT glutamylation specifically on alpha-tubulin and we show that the absence of MT glutamylation is not detrimental for Drosophila NS function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Sistema Nervioso/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Proteínas de Drosophila/análisis , Drosophila melanogaster , Ácido Glutámico/metabolismo , Mutación , Fenotipo
6.
PLoS One ; 8(7): e68775, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861941

RESUMEN

BACKGROUND: Huntington's disease (HD) is caused by the abnormal expansion of the polyglutamine tract in the human Huntingtin protein (polyQ-hHtt). Although this mutation behaves dominantly, huntingtin loss of function also contributes to HD pathogenesis. Indeed, wild-type Huntingtin plays a protective role with respect to polyQ-hHtt induced defects. METHODOLOGY/PRINCIPAL FINDINGS: The question that we addressed here is what part of the wild-type Huntingtin is responsible for these protective properties. We first screened peptides from the Huntingtin protein in HeLa cells and identified a 23 aa peptide (P42) that inhibits polyQ-hHtt aggregation. P42 is part of the endogenous Huntingtin protein and lies within a region rich in proteolytic sites that plays a critical role in the pathogenesis process. Using a Drosophila model of HD, we tested the protective properties of this peptide on aggregation, as well as on different polyQ-hHtt induced neuronal phenotypes: eye degeneration (an indicator of cell death), impairment of vesicular axonal trafficking, and physiological behaviors such as larval locomotion and adult survival. Together, our results demonstrate high protective properties for P42 in vivo, in whole animals. These data also demonstrate a specific role of P42 on Huntington's disease model, since it has no effect on other models of polyQ-induced diseases, such as spinocerebellar ataxias. CONCLUSIONS/SIGNIFICANCE: Altogether our data show that P42, a 23 aa-long hHtt peptide, plays a protective role with respect to polyQ-hHtt aggregation as well as cellular and behavioral dysfunctions induced by polyQ-hHtt in vivo. Our study also confirms the correlation between polyQ-hHtt aggregation and neuronal defects. Finally, these results strongly suggest a therapeutic potential for P42, specific of Huntington's disease.


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Enfermedad de Huntington/metabolismo , Larva/efectos de los fármacos , Proteínas del Tejido Nervioso/química , Oligopéptidos/farmacología , Péptidos/química , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ojo/efectos de los fármacos , Ojo/metabolismo , Ojo/patología , Femenino , Regulación de la Expresión Génica , Células HeLa , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Datos de Secuencia Molecular , Actividad Motora , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Oligopéptidos/química , Oligopéptidos/aislamiento & purificación , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Transporte de Proteínas
7.
Development ; 138(11): 2315-23, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21558379

RESUMEN

Homeodomain transcription factors classically exert their morphogenetic activities through the cell-autonomous regulation of developmental programs. In vertebrates, several homeoproteins have also been shown to have direct non-cell-autonomous activities in the developing nervous system. We present the first in vivo evidence for homeoprotein signaling in Drosophila. Focusing on wing development as a model, we first demonstrate that the homeoprotein Engrailed (En) is secreted. Using single-chain anti-En antibodies expressed under the control of a variety of promoters, we delineate the wing territories in which secreted En acts. We show that En is a short-range signaling molecule that participates in anterior crossvein development, interacting with the Dpp signaling pathway. This report thus suggests that direct signaling with homeoproteins is an evolutionarily conserved phenomenon that is not restricted to neural tissues and involves interactions with bona fide signal transduction pathways.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Alas de Animales/embriología , Animales , Animales Modificados Genéticamente , Anticuerpos , Drosophila/genética , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Proteínas de Homeodominio/inmunología , Humanos , Transducción de Señal , Factores de Transcripción/inmunología , Alas de Animales/metabolismo
8.
Dev Cell ; 15(4): 568-77, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18854141

RESUMEN

In many metazoans, final adult size depends on the growth rate and the duration of the growth period, two parameters influenced by nutritional cues. We demonstrate that, in Drosophila, nutrition modifies the timing of development by acting on the prothoracic gland (PG), which secretes the molting hormone ecdysone. When activity of the Target of Rapamycin (TOR), a core component of the nutrient-responsive pathway, is reduced in the PG, the ecdysone peak that marks the end of larval development is abrogated. This extends the duration of growth and increases animal size. Conversely, the developmental delay caused by nutritional restriction is reversed by activating TOR solely in PG cells. Finally, nutrition acts on the PG during a restricted time window near the end of larval development that coincides with the commitment to pupariation. In conclusion, the PG uses TOR signaling to couple nutritional input with ecdysone production and developmental timing.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Alimentos , Sirolimus/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Ecdisona/biosíntesis , Ecdisona/genética , Ecdisona/metabolismo , Inmunohistoquímica , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/fisiología , Modelos Biológicos , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Tiempo
11.
Science ; 310(5748): 667-70, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16179433

RESUMEN

All animals coordinate growth and maturation to reach their final size and shape. In insects, insulin family molecules control growth and metabolism, whereas pulses of the steroid 20-hydroxyecdysone (20E) initiate major developmental transitions. We show that 20E signaling also negatively controls animal growth rates by impeding general insulin signaling involving localization of the transcription factor dFOXO and transcription of the translation inhibitor 4E-BP. We also demonstrate that the larval fat body, equivalent to the vertebrate liver, is a key relay element for ecdysone-dependent growth inhibition. Hence, ecdysone counteracts the growth-promoting action of insulins, thus forming a humoral regulatory loop that determines organismal size.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Ecdisterona/fisiología , Antagonistas de Insulina , Insulina/fisiología , Animales , Tamaño Corporal , Cruzamientos Genéticos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/fisiología , Proteínas de Insectos/fisiología , Larva/crecimiento & desarrollo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Genes Cells ; 10(2): 119-25, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15676023

RESUMEN

We identified the gene smooth (sm) in a screen for genes that are specifically expressed within the lineage that forms the adult chemosensory bristles. sm is expressed in most or all differentiating neurones during embryogenesis, but is specifically expressed in the neurones of the adult chemosensory organs on the wings and legs during metamorphosis. The inactivation of sm results in axonal defects in the chemosensory neurones, in the inability of mutant flies to feed and in their precocious death. As sm belongs to a family of heterogeneous nuclear ribonucleoprotein (hnRNP), we propose that the control of axonal navigation and connectivity is partly achieved at the level of mRNA splicing or exporting.


Asunto(s)
Axones/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Neuronas Aferentes/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Drosophila/embriología , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Extremidades/embriología , Extremidades/crecimiento & desarrollo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Metamorfosis Biológica , Mutación , Neuronas Aferentes/citología , Empalme del ARN , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Órganos de los Sentidos/embriología , Órganos de los Sentidos/crecimiento & desarrollo , Órganos de los Sentidos/metabolismo , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
13.
Genesis ; 39(4): 246-55, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15286997

RESUMEN

In Drosophila, the sensory organs are formed by cells that derive from a precursor cell through a fixed lineage. One exception to this rule is the bract cell that accompanies some of the adult bristles. The bract cell is derived from the surrounding epidermis and is induced by the bristle cells. On the adult tibia, bracts are associated with all mechanosensory bristles, but not with chemosensory bristles. The differences between chemosensory and mechanosensory lineages are controlled by the selector gene pox-neuro (poxn). Here we show that poxn is also involved in suppressing bract formation near the chemosensory bristles. We have identified the gene kek1, described as an inhibitor of the EGF-R signaling pathway, in a screen for poxn downstream genes. We show that kek1 can suppress bract formation and can interfere with other steps of sensory development, including SMC determination and shaft differentiation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Células Epidérmicas , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Células Quimiorreceptoras/metabolismo , Proteínas de Drosophila/genética , Epidermis/metabolismo , Receptores ErbB/metabolismo , Galactósidos , Inmunohistoquímica , Indoles , Mecanorreceptores/metabolismo , Proteínas de la Membrana/genética , Modelos Biológicos , Morfogénesis/genética , Proteínas del Tejido Nervioso/genética , Hibridación de Ácido Nucleico , Factores de Transcripción Paired Box , Proteínas Tirosina Fosfatasas/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...