Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919775

RESUMEN

Histone chaperones regulate the flow and dynamics of histone variants and ensure their assembly into nucleosomal structures, thereby contributing to the repertoire of histone variants in specialized cells or tissues. To date, not much is known on the distribution of histone variants and their modifications in the dry seed embryo. Here, we bring evidence that genes encoding the replacement histone variant H3.3 are expressed in Arabidopsis dry seeds and that embryo chromatin is characterized by a low H3.1/H3.3 ratio. Loss of HISTONE REGULATOR A (HIRA), a histone chaperone responsible for H3.3 deposition, reduces cellular H3 levels and increases chromatin accessibility in dry seeds. These molecular differences are accompanied by increased seed dormancy in hira-1 mutant seeds. The loss of HIRA negatively affects seed germination even in the absence of HISTONE MONOUBIQUITINATION 1 or TRANSCRIPTION ELONGATION FACTOR II S, known to be required for seed dormancy. Finally, hira-1 mutant seeds show lower germination efficiency when aged under controlled deterioration conditions or when facing unfavorable environmental conditions such as high salinity. Altogether, our results reveal a dependency of dry seed chromatin organization on the replication-independent histone deposition pathway and show that HIRA contributes to modulating seed dormancy and vigor.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Germinación , Chaperonas de Histonas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Cromatina/metabolismo , Epistasis Genética/efectos de los fármacos , Calor , Humedad , Vigor Híbrido , Mutación/genética , Latencia en las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Estrés Salino , Factores de Elongación Transcripcional/metabolismo
2.
Genome Biol ; 20(1): 100, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31113491

RESUMEN

BACKGROUND: The functional determinants of H3K4me3, their potential dependency on histone H2B monoubiquitination, and their contribution to defining transcriptional regimes are poorly defined in plant systems. Unlike in Saccharomyces cerevisiae, where a single SET1 protein catalyzes H3K4me3 as part of COMPlex of proteins ASsociated with Set1 (COMPASS), in Arabidopsis thaliana, this activity involves multiple histone methyltransferases. Among these, the plant-specific SET DOMAIN GROUP 2 (SDG2) has a prominent role. RESULTS: We report that SDG2 co-regulates hundreds of genes with SWD2-like b (S2Lb), a plant ortholog of the Swd2 axillary subunit of yeast COMPASS. We show that S2Lb co-purifies with the AtCOMPASS core subunit WDR5, and both S2Lb and SDG2 directly influence H3K4me3 enrichment over highly transcribed genes. S2Lb knockout triggers pleiotropic developmental phenotypes at the vegetative and reproductive stages, including reduced fertility and seed dormancy. However, s2lb seedlings display little transcriptomic defects as compared to the large repertoire of genes targeted by S2Lb, SDG2, or H3K4me3, suggesting that H3K4me3 enrichment is important for optimal gene induction during cellular transitions rather than for determining on/off transcriptional status. Moreover, unlike in budding yeast, most of the S2Lb and H3K4me3 genomic distribution does not rely on a trans-histone crosstalk with histone H2B monoubiquitination. CONCLUSIONS: Collectively, this study unveils that the evolutionarily conserved COMPASS-like complex has been co-opted by the plant-specific SDG2 histone methyltransferase and mediates H3K4me3 deposition through an H2B monoubiquitination-independent pathway in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Histona Metiltransferasas/metabolismo , Histonas/metabolismo , Ubiquitinación
3.
New Phytol ; 204(4): 864-72, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25157915

RESUMEN

Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process.


Asunto(s)
Germinación/fisiología , Helianthus/genética , Latencia en las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Polirribosomas/genética , ARN Mensajero/metabolismo , Semillas/genética
4.
Gene ; 526(1): 39-45, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23410919

RESUMEN

The Arabidopsis chromosomes contain conspicuous heterochromatin domains comprising the repetitive 45S and 5S ribosomal DNA loci as well as centromeric and pericentromeric repeats that organize into chromocenters during interphase. During developmental phase transitions such as seed maturation, germination, seedling growth and flowering that require large-scale reprogramming of gene expression patterns, the organization of repetitive sequences into chromocenters dynamically changes. Here we illustrate recent studies that shed light on the heterochromatin dynamics in cotyledons, the first aerial tissues preformed in the embryo, and in true leaves. We will summarize available data for the 5S rDNA repeat loci, in particular their chromatin organization and expression dynamics during the first days of post-germination development, and discuss how the plant accommodates 5S rRNA transcription during large-scale chromatin reorganization events.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , ADN de Plantas/genética , ADN de Plantas/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Arabidopsis/crecimiento & desarrollo , Cotiledón/embriología , Cotiledón/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Heterocromatina/genética , Heterocromatina/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Ribosómico 5S/genética , ARN Ribosómico 5S/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo
5.
Biochim Biophys Acta ; 1829(3-4): 274-82, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23142779

RESUMEN

Transcription Factor IIIA (TFIIIA) is specifically required for transcription of 5S ribosomal RNA, an essential component of the ribosome. The TFIIIA protein, found in every organism, has been characterized in several species. It shows remarkably poor conservation of primary protein sequence, but all orthologues analyzed carry several C2H2-zinc fingers that are required for TFIIIA binding to both 5S ribosomal DNA (rDNA) and RNA (rRNA). Alignments of TFIIIA protein and 5S rRNA gene sequences suggest a parallel evolution of the transcription factor and its natural binding site, the internal control region of the 5S rRNA gene. We discuss here how TFIIIA expression and availability in the cell is tightly regulated at the transcriptional, post-transcriptional and post-translational level to ensure adequate amounts of TFIIIA protein depending on cell type and developmental stage. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Asunto(s)
Factor de Transcripción TFIIIA/química , Transcripción Genética , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Evolución Molecular , Humanos , ARN Ribosómico 5S/metabolismo , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIIA/genética , Factor de Transcripción TFIIIA/metabolismo , Xenopus , Dedos de Zinc
6.
Plant J ; 71(1): 35-44, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22353599

RESUMEN

Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA.


Asunto(s)
Empalme Alternativo , Arabidopsis/genética , ARN Ribosómico 5S/biosíntesis , Factor de Transcripción TFIIIA/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Exones , Regulación de la Expresión Génica de las Plantas , Proteolisis , ARN de Planta/genética , Transcripción Genética
7.
Plant Cell Physiol ; 53(2): 267-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22173098

RESUMEN

The 18S, 5.8S and 25S rRNAs, which result from the 45S precursor, together with 5S rRNAs, are central components of the ribosome. The integration of one molecule of each rRNA per ribosome necessitates an elaborate coordination between transcriptions of the two ribosomal DNA (rDNA) families. Even though 5S rDNA is transcribed by RNA polymerase III and 45S rDNA by RNA polymerase I, the two rDNA families present certain similarities in their transcriptional regulation. This review aims to compare 5S and 45S rRNA genes in the plant model Arabidopsis thaliana in terms of organization, transcription and regulation, and draws parallels between the two rDNA families.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , ADN Polimerasa III/metabolismo , ADN Polimerasa I/metabolismo , ARN Ribosómico 5S/genética , ARN Ribosómico/genética , Proteínas de Arabidopsis/genética , ADN Polimerasa I/genética , ADN Polimerasa III/genética , ADN Ribosómico/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genes de ARNr , ARN de Planta/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...