Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220484, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38186272

RESUMEN

Metabolic cold adaptation, or Krogh's rule, is the controversial hypothesis that predicts a monotonically negative relationship between metabolic rate and environmental temperature for ectotherms living along thermal clines measured at a common temperature. Macrophysiological patterns consistent with Krogh's rule are not always evident in nature, and experimentally evolved responses to temperature have failed to replicate such patterns. Hence, temperature may not be the sole driver of observed variation in metabolic rate. We tested the hypothesis that temperature, as a driver of energy demand, interacts with nutrition, a driver of energy supply, to shape the evolution of metabolic rate to produce a pattern resembling Krogh's rule. To do this, we evolved replicate lines of Drosophila melanogaster at 18, 25 or 28°C on control, low-calorie or low-protein diets. Contrary to our prediction, we observed no effect of nutrition, alone or interacting with temperature, on adult female and male metabolic rates. Moreover, support for Krogh's rule was only in females at lower temperatures. We, therefore, hypothesize that observed variation in metabolic rate along environmental clines arises from the metabolic consequences of environment-specific life-history optimization, rather than because of the direct effect of temperature on metabolic rate. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Asunto(s)
Drosophila melanogaster , Estado Nutricional , Femenino , Masculino , Animales , Temperatura
2.
Heredity (Edinb) ; 130(5): 312-319, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914794

RESUMEN

Although containing genes important for sex determination, genetic variation within the Y chromosome was traditionally predicted to contribute little to the expression of sexually dimorphic traits. This prediction was shaped by the assumption that the chromosome harbours few protein-coding genes, and that capacity for Y-linked variation to shape adaptation would be hindered by the chromosome's lack of recombination and holandric inheritance. Consequently, most studies exploring the genotypic contributions to sexually dimorphic traits have focused on the autosomes and X chromosome. Yet, several studies have now demonstrated that the Y chromosome harbours variation affecting male fitness, moderating the expression of hundreds of genes across the nuclear genome. Furthermore, emerging results have shown that expression of this Y-linked variation may be sensitive to environmental heterogeneity, leading to the prediction that Y-mediated gene-by-environment interactions will shape the expression of sexually dimorphic phenotypes. We tested this prediction, investigating whether genetic variation across six distinct Y chromosome haplotypes affects the expression of locomotor activity, at each of two temperatures (20 and 28 °C) in male fruit flies (Drosophila melanogaster). Locomotor activity is a sexually dimorphic trait in this species, previously demonstrated to be under intralocus sexual conflict. We demonstrate Y haplotype effects on male locomotor activity, but the rank order and magnitude of these effects were unaltered by differences in temperature. Our study contributes to a growing number of studies demonstrating Y-linked effects moderating expression of traits evolving under sexually antagonistic selection, suggesting a role for the Y chromosome in shaping outcomes of sexual conflict.


Asunto(s)
Drosophila melanogaster , Genes Ligados a Y , Animales , Masculino , Drosophila melanogaster/genética , Cromosoma Y/genética , Cromosoma X/genética , Locomoción
3.
J Evol Biol ; 34(5): 757-766, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33644926

RESUMEN

Across eukaryotes, genes encoding bioenergetic machinery are located in both mitochondrial and nuclear DNA, and incompatibilities between the two genomes can be devastating. Mitochondria are often inherited maternally, and theory predicts sex-specific fitness effects of mitochondrial mutational diversity. Yet how evolution acts on linkage patterns between mitochondrial and nuclear genomes is poorly understood. Using novel mito-nuclear population-genetic models, we show that the interplay between nuclear and mitochondrial genes maintains mitochondrial haplotype diversity within populations, and selects both for sex-independent segregation of mitochondrion-interacting genes and for paternal leakage. These effects of genetic linkage evolution can eliminate male-harming fitness effects of mtDNA mutational diversity. With maternal mitochondrial inheritance, females maintain a tight mitochondrial-nuclear match, but males accumulate mismatch mutations because of the weak statistical associations between the two genomic components. Sex-independent segregation of mitochondria-interacting loci improves the mito-nuclear match. In a sexually antagonistic evolutionary process, male nuclear alleles evolve to increase the rate of recombination, whereas females evolve to suppress it. Paternal leakage of mitochondria can evolve as an alternative mechanism to improve the mito-nuclear linkage. Our modelling framework provides an evolutionary explanation for the observed paucity of mitochondrion-interacting genes on mammalian sex chromosomes and for paternal leakage in protists, plants, fungi and some animals.


Asunto(s)
Evolución Biológica , Ligamiento Genético , Genoma Mitocondrial , Modelos Genéticos , Caracteres Sexuales , Animales , Femenino , Masculino , Mutación , Recombinación Genética , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...