Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 51(45): 17301-17309, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36317666

RESUMEN

In the present study we provide the sorption properties of four 8-connected Zr4+ MOFs with the general formula H16[Zr6O16(RNH-BDC)4]·solvent (RNH-BDC2- = 2-alkyl-amine-terephthalate; R = ethyl-, ET-MOF; R = propyl-, PROP-MOF; R = isobutyl-, SBUT-MOF; R = n-butyl, BUT-MOF) towards toxic Cr(VI) and radionuclide-related ReO4- oxoanions. These MOFs represent superior sorbents for the removal of oxoanionic species, in terms of kinetics, sorption isotherms, selectivity and regeneration/reusability. The excellent sorption capability of the MOFs is due to a combination of surface and intra-framework sorption phenomena. The latter process proceeds via replacement of terminal water/hydroxyl ligands from the Zr6 clusters and subsequent binding of oxonanions to the Zr4+ centers, a fact that was proved via Rietveld PXRD analysis for the anion-loaded BUT-MOF. Importantly, BUT-MOF demonstrated an exceptional sorption capacity for Cr2O72- (505 mg g-1) and was further utilized in a sorption column in the form of MOF/calcium alginate beads, displaying remarkable removal efficiency towards industrial (chrome-plating) wastewater. Furthermore, the luminescence Cr(VI) sensing properties of BUT-MOF were explored in detail, presenting high sensitivity (detection limits as low as 9 ppb) and selectivity for these species against various competitive anions.


Asunto(s)
Cromo , Luminiscencia , Agua , Aniones
2.
Inorg Chem ; 61(30): 11959-11972, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35861587

RESUMEN

Trivalent lanthanide ions (Ln3+) hold an exceptional position in the field of optoelectronic materials due to their atomic-like emission spectra and long luminescence lifetimes. Metal-organic frameworks (MOFs) and coordination polymers are particularly suited as luminescent materials due to their structural diversity and ease of functionalization both at bridging ligands and/or metal centers. In this contribution, we present a series of mixed-metal Ln3+/Eu3+ (Ln = La, Gd) and mixed-ligand (2,6-naphthalenedicarboxylate (ndc2-) and 4-aminonaphthalene-2,6-dicarboxylate (andc2-)) MOFs belonging to three different structural types, with emissions spanning most of the visible region, thereby constituting favorable materials for color tuning and white-light emission. We investigate the thermal stability and photophysical properties of the synthesized materials with regard to their metal and ligand doping levels and structural type, where we discuss excimer and monomer emission. The photophysical study, involving both steady-state and time-resolved luminescence measurements, allows us to discuss the possible energy migration and Eu3+ sensitization pathways that take place within these materials following ligand excitation. Low-temperature luminescence studies led us to determine the energies of the ligand-based excited states and investigate their participation in thermally activated energy transfer mechanisms within the studied lattices. We observe emission quantum yields of up to 87% for the Eu3+-doped materials, while their ligand- and metal-doped counterparts show decreased quantum yields of up to 17%. Finally, we attempt fine color tuning by carefully adjusting the doping levels to achieve yellow and white-light emission.

3.
Inorg Chem ; 61(20): 7847-7858, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35523200

RESUMEN

Increasing global environmental pollution due to heavy metal ions raises the importance of research on new multifunctional materials for simultaneous detection and removal of these contaminants from water resources. In this study, we report a microporous 8-connected Zr4+ metal-organic framework (MOF) based on a terephthalate ligand decorated with a chelating 2-picolylamine side group (dMOR-2), which shows highly efficient fluorescence sensing and sorption of heavy metal cations. We demonstrate by detailed fluorescence studies the ability of a water-dispersible composite of dMOR-2 with polyvinylpyrrolidone for real-time detection of Cu2+, Pb2+, and Hg2+ in aqueous media. The limits of detection were found to be below 2 ppb for these species, while the system's performance is not affected by the presence of other potentially competitive ions. In addition, sorption studies showed that a composite of dMOR-2 with calcium alginate (dMOR-2@CaA) is an excellent sorbent for Pb2+ and Cu2+ ions with capacities of 376 ± 15 and 117 ± 4 mg per gram of dMOR-2@CaA, respectively, while displaying the capability for simultaneous removal of various heavy metal ions in low initial concentrations and in the presence of large excesses of other cationic species. Structural and spectroscopic studies with model ligands analogous to our material's receptor unit showed chelation to the 2-picolylamine moiety to be the main binding mode of metal ions to dMOR-2. Overall, dMOR-2 is shown to represent a rare example of a MOF, which combines sensitive fluorescence detection and high sorption capacity for heavy metal ions.


Asunto(s)
Estructuras Metalorgánicas , Metales Pesados , Colorantes , Iones , Plomo , Estructuras Metalorgánicas/química , Agua
4.
Dalton Trans ; 50(26): 9215-9224, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34125130

RESUMEN

There is a clear need to develop photostable chromophores for bioimaging with respect to the classically utilized green fluorescent dye fluorescein. Along these lines, we utilized a phosphorescent carboxy-substituted ruthenium(ii) polypyridyl [Ru(bipy)2(mcb)]2+ (bipy = 2,2'-bipyridyl and mcb = 4-carboxy-4'-methyl-2,2'-bipyridyl) complex. We developed two luminescent peptide conjugates of the cell-penetrating peptide Tat48-60 consisting of either [Ru(bipy)2(mcb)]2+ or 5(6)-carboxyfluorescein (5(6)-FAM) tethered on the Lys50 of the peptide through amide bond. We confirmed the efficient cellular uptake of both bioconjugates in HeLa cells by confocal microscopy and flow cytometry and proved that the ruthenium-based chromophore possesses enhanced photostability compared to a 5(6)-FAM-based peptide, after continuous laser scanning. Furthermore, we designed and developed a luminescent agent with high photostability, based on the ruthenium core, that could be selectively localized in cancer cells overexpressing the GnRH receptor (GnRH-R). To achieve this, we took advantage of the tumor-homing character of d-Lys6-GnRH which selectively recognizes the GnRH-R. The [Ru(bipy)2(mcb)]2+-d-Lys6-GnRH peptide conjugate was synthesized, and its cellular uptake was evaluated through flow cytometric analysis and live-cell imaging in HeLa and T24 bladder cancer cells as negative and positive controls of GnRH-R, respectively. Besides the selective targeting that the specific conjugate could offer, we also recorded high internalization levels in T24 bladder cancer cells. The ruthenium(ii) polypyridyl peptide-based conjugates we developed is an intriguing approach that offers targeted cell imaging in the Near Infrared region, and simultaneously paves the way for further advancements in the dynamic studies on cellular imaging.


Asunto(s)
Hormona Liberadora de Gonadotropina , Rutenio , Colorantes Fluorescentes , Células HeLa , Humanos
5.
Dalton Trans ; 49(46): 16736-16744, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33118571

RESUMEN

Alkaline earth metal ion organic frameworks (AEMOFs) represent a relatively underexplored subcategory of metal-organic frameworks (MOFs). In this contribution, we present the synthesis and structural study of the new MOFs 1-8 based on the alkaline earth ions Mg2+, Ca2+, Sr2+ and Ba2+ and the amino substituted bridging ligands 4-aminonaphthalene-2,6-dicarboxylate (ANDC2-) and 4,8-diaminonaphthalene-2,6-dicarboxylate (DANDC2-). Compounds 1, 5, 6, 7 and 8 constitute rare examples of three-dimensional MOFs which feature square planar M4 secondary building units (SBUs) surrounded by eight bridging ditopic ligands. The underlying topology of MOFs 1, 5, 7 and 8 conforms to the 4-c pcb net which can be simplified to the 8-c bcu net, while 6 adopts the 4-c lta net which simplifies to the 8-c reo net. To the best of our knowledge these are the first examples of MOFs of their structural types formed by linear dicarboxylates instead of trigonal tricarboxylates or tetrahedral tetracarboxylates. Compounds 2, 3 and 4 also feature three dimensional networks with linear rod-shaped SBUs with the Ba2+ MOF 3 displaying an sra rod-net and MOFs 2 and 4 showing very complex rod-nets with so far unique topologies. Fluorescence studies revealed that the free ligands exhibit strong blue-green emission displaying considerable positive solvatochromism thereby pointing towards charge transfer excited states involving the shift of electron density from the amino groups to the aromatic core. Correspondingly, the MOFs display ligand based fluorescence with small differences in emission maxima possibly attributable to the difference in the charge density of the metal ions combined with the different environments around ligands in the crystal structures.

6.
Molecules ; 25(3)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991766

RESUMEN

In this study, we report the luminescence color tuning in the lanthanide metal-organic framework (LnMOF) ([La(bpdc)Cl(DMF)] (1); bpdc2- = [1,1'-biphenyl]-4,4'-dicarboxylate, DMF = N,N-dimethylformamide) by introducing dual emission properties in a La3+ MOF scaffold through doping with the blue fluorescent 2,2'-diamino-[1,1'-biphenyl]-4,4'-dicarboxylate (dabpdc2-) and the red emissive Eu3+. With a careful adjustment of the relative doping levels of the lanthanide ions and bridging ligands, the color of the luminescence was modulated, while at the same time the photophysical characteristics of the two chromophores were retained. In addition, the photophysical properties of the parent MOF (1) and its doped counterparts with various dabpdc2-/bpdc2- and Eu3+/La3+ ratios and the photoinduced energy transfer pathways that are possible within these materials are discussed. Finally, the temperature dependence study on the emission profile of a doped analogue containing 10% dabpdc2- and 2.5% Eu3+ (7) is presented, highlighting the potential of this family of materials to behave as temperature sensors.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Luminiscencia , Estructuras Metalorgánicas/química , Metales/química , Algoritmos , Color , Dimetilformamida/análogos & derivados , Dimetilformamida/química , Elementos de la Serie de los Lantanoides/síntesis química , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Químicos , Conformación Molecular , Reproducibilidad de los Resultados , Temperatura , Termogravimetría
7.
J Phys Chem B ; 120(3): 527-34, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26730460

RESUMEN

A series of Boron-dipyrromethene (Bodipy) dyes were used as photosensitizers for photochemical hydrogen production in conjunction with [Co(III)(dmgH)2pyCl] (where dmgH = dimethylglyoximate, py = pyridine) as the catalyst and triethanolamine (TEOA) as the sacrificial electron donor. The Bodipy dyes are fully characterized by electrochemistry, X-ray crystallography, quantum chemistry calculations, femtosecond transient absorption, and time-resolved fluorescence, as well as in long-term hydrogen production assays. Consistent with other recent reports, only systems containing halogenated chromophores were active for hydrogen production, as the long-lived triplet state is necessary for efficient bimolecular electron transfer. Here, it is shown that the photostability of the system improves with Bodipy dyes containing a mesityl group versus a phenyl group, which is attributed to increased electron donating character of the mesityl substituent. Unlike previous reports, the optimal ratio of chromophore to catalyst is established and shown to be 20:1, at which point this bimolecular dye/catalyst system performs 3-4 times better than similar chemically linked systems. We also show that the hydrogen production drops dramatically with excess catalyst concentration. The maximum turnover number of ∼ 700 (with respect to chromophore) is obtained under the following conditions: 1.0 × 10(-4) M [Co(dmgH)2pyCl], 5.0 × 10(-6) M Bodipy dye with iodine and mesityl substituents, 1:1 v:v (10% aqueous TEOA):MeCN (adjusted to pH 7), and irradiation by light with λ > 410 nm for 30 h. This system, containing discrete chromophore and catalyst, is more active than similar linked Bodipy-Co(dmg)2 dyads recently published, which, in conjunction with our other measurements, suggests that the nominal dyads actually function bimolecularly.

8.
Chem Sci ; 7(3): 2427-2436, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29997784

RESUMEN

We report an anion exchange composite material based on a protonated amine-functionalized metal-organic framework, denoted Metal Organic Resin-1 (MOR-1), and alginic acid (HA). MOR-1-HA material shows an exceptional capability to rapidly and selectively sorb Cr(vi) under a variety of conditions and in the presence of several competitive ions. The selectivity of MOR-1-HA for Cr(vi) is shown to be the result of strong O3CrVI···NH2 interactions. The composite sorbent can be successfully utilized in an ion-exchange column, in contrast to pristine MOR-1 which forms fine suspensions in water passing through the column. Remarkably, an ion exchange column with only 1% wt MOR-1-HA and 99% wt sand (an inert and inexpensive material) is capable of reducing moderate and trace Cr(vi) concentrations to well below the acceptable safety limits for water. The relatively low cost of MOR-1-HA/sand column and its high regeneration capability and reusability make it particularly attractive for application in the remediation of Cr(vi)-bearing industrial waste.

10.
Inorg Chem ; 54(12): 5813-26, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26039441

RESUMEN

Alkaline earth (group 2) metal ion organic frameworks (AEMOFs) represent an important subcategory of MOFs with interesting structures and physical properties. Five MOFs, namely, [Mg2(H2dhtp)2(µ-H2O)(NMP)4] (AEMOF-2), [Mg2(H2dhtp)1.5(DMAc)4]Cl·DMAc (AEMOF-3), [Ca(H2dhtp)(DMAc)2] (AEMOF-4), [Sr3(H2dhtp)3(DMAc)6]·H2O (AEMOF-5), and [Ba(H2dhtp)(DMAc)] (AEMOF-6) (H4dhtp = 2,5-dihydroxy-terepthalic acid; DMAc = N,N-dimethylacetamide; NMP = N-methylpyrrolidone), are presented herein. The reported MOFs display structural variety with diverse topologies and new structural features. Interestingly, AEMOF-6 is the first example of a Ba(2+)-H2dhtp(2-) MOF, and AEMOF-5 is only the second known Sr(2+)-H2dhtp(2-) MOF. Detailed photoluminescence studies revealed alkaline earth metal ion-dependent fluorescence properties of the materials, with the heavier alkaline earth metal ions exhibiting red-shifted emission with respect to the lighter ions at room temperature. A bathochromic shift of the emission was observed for the MOFs (mostly for AEMOF-3 and AEMOF-4) at 77 K as a result of excited state proton transfer (ESIPT), which involves an intramolecular proton transfer from a hydroxyl to an adjacent carboxylic group of the H2dhtp(2-) ligand. Remarkably, AEMOF-6 displays rare yellow fluorescence at room temperature, which is attractive for solid state lighting applications. To probe whether the alkaline earth metal ions are responsible for the unusual luminescence properties of the reported MOFs, the potential energy surfaces (PESs) of the ground, S0, and lowest energy excited singlet, S1, states of model complexes along the intramolecular proton transfer coordinate were calculated by DFT and TD-DFT methods.

11.
Angew Chem Int Ed Engl ; 54(5): 1651-6, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25487062

RESUMEN

The development of efficient sensors for the determination of the water content in organic solvents is highly desirable for a number of chemical industries. Presented herein is a Mg(2+) metal-organic framework (MOF), which exhibits the remarkable capability to rapidly detect traces of water (0.05-5 % v/v) in various organic solvents through an unusual turn-on luminescence sensing mechanism. The extraordinary sensitivity and fast response of this MOF for water, and its reusability make it one of the most powerful water sensors known.


Asunto(s)
Compuestos Organometálicos/química , Solventes/química , Espectrometría de Fluorescencia , Agua/análisis , Complejos de Coordinación/química , Metales Alcalinotérreos/química , Termodinámica
12.
Chemistry ; 20(7): 2049-57, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24403209

RESUMEN

Two new artificial mimics of the photosynthetic antenna-reaction center complex have been designed and synthesized (BDP-H2 P-C60 and BDP-ZnP-C60). The resulting electron-donor/acceptor conjugates contain a porphyrin (either in its free-base form (H2P) or as Zn-metalated complex (ZnP)), a boron dipyrrin (BDP), and a fulleropyrrolidine possessing, as substituent of the pyrrolidine nitrogen, an ethylene glycol chain terminating in an amino group C60-X-NH2 (X=spacer). In both cases, the three different components were connected by s-triazine through stepwise substitution reactions of cyanuric chloride. In addition to the facile synthesis, the star-type arrangement of the three photo- and redox-active components around the central s-triazine unit permits direct interaction between one another, in contrast to reported examples in which the three components are arranged in a linear fashion. The energy- and electron-transfer properties of the resulting electron-donor/acceptor conjugates were investigated by using UV/Vis absorption and emission spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. Comparison of the absorption spectra and cyclic voltammograms of BDP-H2P-C60 and BDP-ZnP-C60 with those of BDP-H2P, BDP-ZnP and BDP-C60, which were used as references, showed that the spectroscopic and electrochemical properties of the individual constituents are basically retained, although some appreciable shifts in terms of absorption indicate some interactions in the ground state. Fluorescence lifetime measurements and transient absorption experiments helped to elucidate the antenna function of BDP, which upon selective excitation undergoes a rapid and efficient energy transfer from BDP to H2P or ZnP. This is then followed by an electron transfer to C60, yielding the formation of the singlet charge-separated states, namely BDP-H2(·+) -C60(·-) and BDP-ZnP(·+)-C60(·-). As such, the sequence of energy transfer and electron transfer in the present models mimics the events of natural photosynthesis.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Porfirinas/química , Triazinas/química , Boro/química , Técnicas Electroquímicas , Transporte de Electrón , Glicol de Etileno/química , Fulerenos/química , Metaloporfirinas/química , Fotosíntesis , Pirrolidinas/química , Zinc/química
13.
Chem Commun (Camb) ; 50(5): 521-3, 2014 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23938601

RESUMEN

A combination of noble-metal free components, a water soluble porphyrin photosensitizer zinc meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride [ZnTMPyP(4+)]Cl4 (1) with cobaloxime complex [Co(III)(dmgH)2(py)Cl] (2) as a catalyst, creates an efficient system for photochemical hydrogen production acting under visible light with 280 TONs. This is the first example of a water soluble porphyrin acting as a photosensitizer for cobaloxime catalysed H2 production.


Asunto(s)
Cobalto/química , Hidrógeno/química , Metaloporfirinas/química , Compuestos Organometálicos/química , Porfirinas/química , Catálisis , Complejos de Coordinación/química , Concentración de Iones de Hidrógeno , Metales/química , Fármacos Fotosensibilizantes/química
14.
J Am Chem Soc ; 135(8): 3095-103, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23330664

RESUMEN

Several recent studies have shown that the combination of photosensitizers with metalloenzymes can support a light-driven multielectron reduction of molecules such as CO(2) or HCN. Here we show that the association of the zinc tetramethylpyridinium porphyrin (ZnTMPyP(4+)) photosensitizer with the multicopper oxidase (MCO) laccase allows to link the oxidation of an organic molecule to the four electrons reduction of dioxygen into water. The enzyme is photoreduced within minutes with porphyrin/enzyme ratio as low as 1:40. With a 1:1 ratio, the dioxygen consumption rate is 1.7 µmol L(-1) s(-1). Flash photolysis experiments support the formation of the triplet excited state of ZnTMPyP(4+) which reduces the enzyme to form a radical cation of the porphyrin with a k(ET) ≈ 10(7) s(-1) M(-1). The long-lived triplet excited state of the ZnTMPyP(4+) (τ(0) = 0.72 ms) accounts for a substantial electron-transfer quantum yield, φ(ET) = 0.35. Consequently, the enzyme-dependent photo-oxidation of the electron donor occurs with a turnover of 8 min(-1) for the one-electron oxidation process, thereby supporting the suitability of such enzyme/sensitizer hybrid systems for aerobic photodriven transformations on substrates. This study is the first example of a phorphyrin-sensitized four-electron reduction of an enzyme of the MCO family, leading to photoreduction of dioxygen into water.


Asunto(s)
Lacasa/química , Luz , Oxígeno/química , Porfirinas/química
15.
Inorg Chem ; 51(20): 10548-56, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23020781

RESUMEN

In recent years, there has been a growing interest in the design and synthesis of chromophores, which absorb in a wide region of the visible spectrum, as these constitute promising candidates for use as sensitizers in various solar energy conversion schemes. In this work, a palladium-catalyzed coupling reaction was employed in the synthesis of molecular triads in which two porphyrin or boron dipyrrin (BDP) chromophores are linked to the meso positions of a central Zn porphyrin (PZn) ring via an amino group. In the resulting conjugates, which strongly absorb over most of the visible region, the electronic properties of the constituent chromophores are largely retained while detailed emission experiments reveal the energy transfer pathways that occur in each triad.


Asunto(s)
Paladio/química , Porfirinas/química , Absorción , Aminación , Catálisis , Técnicas de Química Sintética , Color , Electroquímica , Modelos Moleculares , Conformación Molecular
16.
Inorg Chem ; 51(7): 4193-204, 2012 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-22424174

RESUMEN

In this report we describe the synthesis of multichromophore arrays consisting of two Bodipy units axially bound to a Sn(IV) porphyrin center either via a phenolate (3) or via a carboxylate (6) functionality. Absorption spectra and electrochemical studies show that the Bodipy and porphyrin chromophores interact weakly in the ground state. However, steady-state emission and excitation spectra at room temperature reveal that fluorescence from both the Bodipy and the porphyrin of 3 are strongly quenched suggesting that, in the excited state, energy and/or electron transfer might occur. Indeed, as transient absorption experiments show, selective excitation of Bodipy in 3 results in a rapid decay (τ ≈ 2 ps) of the Bodipy-based singlet excited state and a concomitant rise of a charge-separated state evolving from the porphyrin-based singlet excited state. In contrast, room-temperature emission studies on 6 show strong quenching of the Bodipy-based fluorescence leading to sensitized emission from the porphyrin moiety due to a transduction of the singlet excited state energy from Bodipy to the porphyrin. Emission experiments at 77 K in frozen toluene reveal that the room-temperature electron transfer pathway observed in 3 is suppressed. Instead, Bodipy excitation in 3 and 6 results in population of the first singlet excited state of the porphyrin chromophore. Subsequently, intersystem crossing leads to the porphyrin-based triplet excited state.

17.
Inorg Chem ; 50(18): 8926-36, 2011 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-21846119

RESUMEN

The boron dipyrrin (Bodipy) chromophore was combined with either a free-base or a Zn porphyrin moiety (H(2)P and ZnP respectively), via an easy synthesis involving a cyanuric chloride bridging unit, yielding dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5). The photophysical properties of Bodipy-H(2)P (4) and Bodipy-ZnP (5) were investigated by UV-Vis absorption and emission spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The comparison of the absorption spectra and cyclic voltammograms of dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5) with those of their model compounds Bodipy, H(2)P, and ZnP shows that the spectroscopic and electrochemical properties of the constituent chromophores are essentially retained in the dyads indicating negligible interaction between them in the ground state. In addition, luminescence and transient absorption experiments show that excitation of the Bodipy unit in Bodipy-H(2)P (4) and Bodipy-ZnP (5) into its first singlet excited state results in rapid Bodipy to porphyrin energy transfer-k(4) = 2.9 × 10(10) s(-1) and k(5) = 2.2 × 10(10) s(-1) for Bodipy-H(2)P (4) and Bodipy-ZnP (5), respectively-generating the first porphyrin-based singlet excited state. The porphyrin-based singlet excited states give rise to fluorescence or undergo intersystem crossing to the corresponding triplet excited states. The title complexes could also be used as precursors for further substitution on the third chlorine atom on the cyanuric acid moiety.


Asunto(s)
Compuestos de Boro/química , Porfirinas/química , Compuestos de Boro/síntesis química , Técnicas Electroquímicas , Transferencia de Energía , Modelos Moleculares , Porfirinas/síntesis química , Análisis Espectral
18.
Chemistry ; 17(26): 7213-9, 2011 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-21618629

RESUMEN

A series of protected phenylalanine and diphenylalanine derivatives have been coupled through a peptide bond to a monoaminoporphyrin to form new materials. A comparative study in solution and in the solid state has been performed and confirmed new and interesting properties for the self-assembled hybrid materials while conserving the electronic properties of the chromophore. Thus, they are powerful candidates for use in dye-sensitized solar cells.

19.
J Am Chem Soc ; 133(2): 350-64, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21175161

RESUMEN

The dyads 3, 4, and 6, combining the Bodipy chromophore with a Pt(bpy)(bdt) (bpy = 2,2'-bipyridine, bdt = 1,2-benzenedithiolate, 3 and 6) or a Pt(bpy)(mnt) (mnt = maleonitriledithiolate, 4) moiety, have been synthesized and studied by UV-vis steady-state absorption, transient absorption, and emission spectroscopies and cyclic voltammetry. Comparison of the absorption spectra and cyclic voltammograms of dyads 3, 4, and 6 and those of their model compounds 1a, 2, 5, and 7 shows that the spectroscopic and electrochemical properties of the dyads are essentially the sum of their constituent chromophores, indicating negligible interaction of the constituent chromophores in the ground state. However, emission studies on 3 and 6 show a complete absence of both Bodipy-based fluorescence and the characteristic luminescence of the Pt(bpy)(bdt) unit. Dyad 4 shows a weak Pt(mnt)-based emission. Transient absorption studies show that excitation of the dyads into the Bodipy-based (1)ππ* excited state is followed by singlet energy transfer (SEnT) to the Pt(dithiolate)-based (1)MMLL'CT (mixed metal-ligand to ligand charge transfer) excited state (τ(SEnT)(3) = 0.6 ps, τ(SEnT)(4) = 0.5 ps, and τ(SEnT)(6) = 1.6 ps), which undergoes rapid intersystem crossing to the (3)MMLL'CT state due to the heavy Pt(II) ion. The (3)MMLL'CT state is then depopulated by triplet energy transfer (TEnT) to the low-lying Bodipy-based (3)ππ* excited state (τ(SEnT)(3) = 8.2 ps, τ(SEnT)(4) = 5 ps, and τ(SEnT)(6) = 160 ps). The transition assignments are supported by TD-DFT calculations. Both energy-transfer processes are shown to proceed via a Dexter electron exchange mechanism. The much longer time constants for dyad 6 relative to 3 are attributed to the significantly poorer coupling and resonance of charge-separated species that are intermediates in the electron exchange process.


Asunto(s)
2,2'-Dipiridil/química , Iminas/química , Compuestos Organoplatinos/síntesis química , Platino (Metal)/química , Compuestos de Sulfhidrilo/química , Modelos Moleculares , Estructura Molecular , Compuestos Organoplatinos/química , Procesos Fotoquímicos
20.
Bioinorg Chem Appl ; : 307696, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20634981

RESUMEN

The synthesis of new trans A(2)B(2)-substituted porphyrins bearing oxygenic substituent (methoxy, acetoxy, hydroxy) at the periphery of the ring are described. All of the synthesized products were characterized by (1)H-N.M.R., (13)C-N.M.R., and H.R.M.S. Electrochemical studies revealed two one-electron oxidations and two reductions. In addition, the X-ray structure of one methoxy-derivative was determined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...