Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 275: 116254, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547729

RESUMEN

Heavy metal exposure leads to multiple system dysfunctions. The mechanisms are likely multifactorial and involve inflammation and oxidative stress. The aim of this study was to evaluate markers and risk factors for atherosclerosis in the LDL receptor knockout mouse model chronically exposed to inorganic mercury (Hg) in the drinking water. Results revealed that Hg exposed mice present increased plasma levels of cholesterol, without alterations in glucose. As a major source and target of oxidants, we evaluated mitochondrial function. We found that liver mitochondria from Hg treated mice show worse respiratory control, lower oxidative phosphorylation efficiency and increased H2O2 release. In addition, Hg induced mitochondrial membrane permeability transition. Erythrocytes from Hg treated mice showed a 50% reduction in their ability to take up oxygen, lower levels of reduced glutathione (GSH) and of antioxidant enzymes (SOD, catalase and GPx). The Hg treatment disturbed immune system cells counting and function. While lymphocytes were reduced, monocytes, eosinophils and neutrophils were increased. Peritoneal macrophages from Hg treated mice showed increased phagocytic activity. Hg exposed mice tissues present metal impregnation and parenchymal architecture alterations. In agreement, increased systemic markers of liver and kidney dysfunction were observed. Plasma, liver and kidney oxidative damage indicators (MDA and carbonyl) were increased while GSH and thiol groups were diminished by Hg exposure. Importantly, atherosclerotic lesion size in the aorta root of Hg exposed mice were larger than in controls. In conclusion, in vivo chronic exposure to Hg worsens the hypercholesterolemia, impairs mitochondrial bioenergetics and redox function, alters immune cells profile and function, causes several tissues oxidative damage and accelerates atherosclerosis development.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Mercurio , Animales , Ratones , Aterosclerosis/inducido químicamente , Peróxido de Hidrógeno , Enfermedades Renales , Mercurio/toxicidad , Ratones Noqueados , Estrés Oxidativo/fisiología , Receptores de LDL/genética
2.
Biomolecules ; 13(10)2023 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-37892238

RESUMEN

CETP activity reduces plasma HDL-cholesterol concentrations, a correlate of an increased risk of atherosclerotic events. However, our recent findings suggest that CETP expression in macrophages promotes an intracellular antioxidant state, reduces free cholesterol accumulation and phagocytosis, and attenuates pro-inflammatory gene expression. To determine whether CETP expression in macrophages affects atherosclerosis development, we transplanted bone marrow from transgenic mice expressing simian CETP or non-expressing littermates into hypercholesterolemic LDL-receptor-deficient mice. The CETP expression did not change the lipid-stained lesion areas but decreased the macrophage content (CD68), neutrophil accumulation (LY6G), and TNF-α aorta content of young male transplanted mice and decreased LY6G, TNF-α, iNOS, and nitrotyrosine (3-NT) in aged female transplanted mice. These findings suggest that CETP expression in bone-marrow-derived cells reduces the inflammatory features of atherosclerosis. These novel mechanistic observations may help to explain the failure of CETP inhibitors in reducing atherosclerotic events in humans.


Asunto(s)
Aterosclerosis , Médula Ósea , Humanos , Ratones , Animales , Masculino , Femenino , Anciano , Médula Ósea/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/genética , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Aterosclerosis/metabolismo , Colesterol/metabolismo , Ratones Transgénicos , Ratones Endogámicos C57BL
3.
Am J Physiol Heart Circ Physiol ; 325(3): H592-H600, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37539470

RESUMEN

Endothelial dysfunction is an early manifestation of atherosclerosis. The cholesteryl ester transfer protein (CETP) has been considered proatherogenic by reducing plasma HDL levels. However, CETP may exhibit cell- or tissue-specific effects. We have previously reported that male mice expressing the human CETP gene show impaired endothelium-mediated vascular relaxation associated with oxidative stress. Although sexual dimorphisms on the metabolic role of CETP have been proposed, possible sex differences in the vascular effects of CETP were not previously studied. Thus, here we investigated the endothelial function of female CETP transgenic mice as compared with nontransgenic controls (NTg). Aortas from CETP females presented preserved endothelium-dependent relaxation to acetylcholine and an endothelium-dependent reduction of phenylephrine-induced contraction. eNOS phosphorylation (Ser1177) and calcium-induced NO levels were enhanced, whereas reactive oxygen species (ROS) production and NOX2 and SOD2 expression were reduced in the CETP female aortas. Furthermore, CETP females exhibited increased aortic relaxation to 17ß-estradiol (E2) and upregulation of heat shock protein 90 (HSP90) and caveolin-1, proteins that stabilize estrogen receptor (ER) in the caveolae. Indeed, CETP females showed an increased E2-induced relaxation in a manner sensitive to estrogen receptor-α (ERα) and HSP90 inhibitors methylpiperidinopyrazole (MPP) and geldanamycin, respectively. MPP also impaired the relaxation response to acetylcholine in CETP but not in NTg females. Altogether, the study indicates that CETP expression ameliorates the anticontractile endothelial effect and relaxation to E2 in females. This was associated with less ROS production, and increased eNOS-NO and E2-ERα pathways. These results highlight the need for considering the sex-specific effects of CETP on cardiovascular risk.NEW & NOTEWORTHY Here we demonstrated that CETP expression has a sex-specific impact on the endothelium function. Contrary to what was described for males, CETP-expressing females present preserved endothelium-dependent relaxation to acetylcholine and improved relaxation response to 17ß-estradiol. This was associated with less ROS production, increased eNOS-derived NO, and increased expression of proteins that stabilize estrogen receptor-α (ERα), thus increasing E2-ERα signaling sensitivity. These results highlight the need for considering the sex-specific effects of CETP on cardiovascular risk.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol , Receptor alfa de Estrógeno , Óxido Nítrico Sintasa de Tipo III , Animales , Femenino , Ratones , Acetilcolina/farmacología , Proteínas de Transferencia de Ésteres de Colesterol/genética , Endotelio/metabolismo , Endotelio Vascular/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vasodilatación
4.
Diabetes Metab Syndr Obes ; 11: 321-332, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013377

RESUMEN

OBJECTIVE: The aim of the study was to evaluate the effects of supplementation with glucosyl hesperidin (GH), with or without physical training, on body weight, fat depot, glucose and plasma lipids, oxidative status and vascular function of rats fed with high-fat diet (HFD). METHODS: After weaning, male Wistar rats were fed with an HFD plus fructose for 12 weeks and started receiving oral antioxidant supplementation and/or physical training after the fourth week of diet for eight further weeks. Body weight, epididymal and retroperitoneal fat, plasma glucose and lipids, oxidative status and mesenteric artery reactivity were evaluated. RESULTS: Rats fed with HFD presented higher body weight gain and fat accumulation compared to control rats, while GH supplementation did not influence these parameters. Physical training reduced the body weight gain and fat accumulation and modulated the oxidative status by increasing superoxide dismutase activity and total antioxidant capacity and reducing lipid peroxidation. GH alone decreased lipid peroxidation. However, when given to exercised rats, it impaired the response elicited by physical training. HFD caused endothelial dysfunction, and neither GH nor physical exercise prevented it. Potency of sodium nitroprusside was increased in exercised animals but not in GH-supplemented rats. CONCLUSION: Physical exercise partially decreased the body fat accumulation, decreased plasma levels of glucose and lipids and improved general oxidative status and endothelium-independent relaxation in mesenteric arteries of rats fed with HFD. GH exhibited benefits only in the oxidative status. However, GH given in association with physical exercise did not cause further changes in addition to those promoted by physical exercise. On the contrary, in exercised animals, GH prevented those changes elicited by physical training in plasma glucose and lipids, oxidative status and endothelium-independent relaxation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA