Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurodev Disord ; 16(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166648

RESUMEN

BACKGROUND: Sensory processing dysfunction (SPD) is linked to altered white matter (WM) microstructure in school-age children. Sensory over-responsivity (SOR), a form of SPD, affects at least 2.5% of all children and has substantial deleterious impact on learning and mental health. However, SOR has not been well studied using microstructural imaging such as diffusion MRI (dMRI). Since SOR involves hypersensitivity to external stimuli, we test the hypothesis that children with SOR require compensatory neuroplasticity in the form of superior WM microstructural integrity to protect against internalizing behavior, leaving those with impaired WM microstructure vulnerable to somatization and depression. METHODS: Children ages 8-12 years old with neurodevelopmental concerns were assessed for SOR using a comprehensive structured clinical evaluation, the Sensory Processing 3 Dimensions Assessment, and underwent 3 Tesla MRI with multishell multiband dMRI. Tract-based spatial statistics was used to measure diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) metrics from global WM and nineteen selected WM tracts. Correlations of DTI and NODDI measures with measures of somatization and emotional disturbance from the Behavioral Assessment System for Children, 3rd edition (BASC-3), were computed in the SOR group and in matched children with neurodevelopmental concerns but not SOR. RESULTS: Global WM fractional anisotropy (FA) is negatively correlated with somatization and with emotional disturbance in the SOR group but not the non-SOR group. Also observed in children with SOR are positive correlations of radial diffusivity (RD) and free water fraction (FISO) with somatization and, in most cases, emotional disturbance. These effects are significant in boys with SOR, whereas the study is underpowered for girls. The most affected white matter are medial lemniscus and internal capsule sensory tracts, although effects of SOR are observed in many cerebral, cerebellar, and brainstem tracts. CONCLUSION: White matter microstructure is related to affective behavior in children with SOR.


Asunto(s)
Sustancia Blanca , Masculino , Niño , Femenino , Humanos , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Cerebelo
2.
Front Neurosci ; 17: 1136424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492404

RESUMEN

Introduction: Sensory Processing Dysfunction (SPD) is common yet understudied, affecting up to one in six children with 40% experiencing co-occurring challenges with attention. The neural architecture of SPD with Attention Deficit and Hyperactivity Disorder (ADHD) (SPD+ADHD) versus SPD without ADHD (SPD-ADHD) has yet to be explored in diffusion tensor imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI) has yet to be examined. Methods: The present study computed DTI and NODDI biophysical model parameter maps of one hundred children with SPD. Global, regional and voxel-level white matter tract measures were analyzed and compared between SPD+ADHD and SPD-ADHD groups. Results: SPD+ADHD children had global WM Fractional Anisotropy (FA) and Neurite Density Index (NDI) that trended lower than SPD-ADHD children, primarily in boys only. Data-driven voxelwise and WM tract-based analysis revealed statistically significant decreases of NDI in boys with SPD+ADHD compared to those with SPD-ADHD, primarily in projection tracts of the internal capsule and commissural fibers of the splenium of the corpus callosum. Conclusion: We conclude that WM microstructure is more delayed/disrupted in boys with SPD+ADHD compared to SPD-ADHD, with NODDI showing a larger effect than DTI. This may represent the combined WM pathology of SPD and ADHD, or it may result from a greater degree of SPD WM pathology causing the development of ADHD.

3.
Front Neurosci ; 17: 1088052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139524

RESUMEN

Diffusion tensor imaging (DTI) studies have demonstrated white matter microstructural differences between the left and right hemispheres of the brain. However, the basis of these hemispheric asymmetries is not yet understood in terms of the biophysical properties of white matter microstructure, especially in children. There are reports of altered hemispheric white matter lateralization in ASD; however, this has not been studied in other related neurodevelopmental disorders such as sensory processing disorder (SPD). Firstly, we postulate that biophysical compartment modeling of diffusion MRI (dMRI), such as Neurite Orientation Dispersion and Density Imaging (NODDI), can elucidate the hemispheric microstructural asymmetries observed from DTI in children with neurodevelopmental concerns. Secondly, we hypothesize that sensory over-responsivity (SOR), a common type of SPD, will show altered hemispheric lateralization relative to children without SOR. Eighty-seven children (29 females, 58 males), ages 8-12 years, presenting at a community-based neurodevelopmental clinic were enrolled, 48 with SOR and 39 without. Participants were evaluated using the Sensory Processing 3 Dimensions (SP3D). Whole brain 3 T multi-shell multiband dMRI (b = 0, 1,000, 2,500 s/mm2) was performed. Tract Based Spatial Statistics were used to extract DTI and NODDI metrics from 20 bilateral tracts of the Johns Hopkins University White-Matter Tractography Atlas and the lateralization Index (LI) was calculated for each left-right tract pair. With DTI metrics, 12 of 20 tracts were left lateralized for fractional anisotropy and 17/20 tracts were right lateralized for axial diffusivity. These hemispheric asymmetries could be explained by NODDI metrics, including neurite density index (18/20 tracts left lateralized), orientation dispersion index (15/20 tracts left lateralized) and free water fraction (16/20 tracts lateralized). Children with SOR served as a test case of the utility of studying LI in neurodevelopmental disorders. Our data demonstrated increased lateralization in several tracts for both DTI and NODDI metrics in children with SOR, which were distinct for males versus females, when compared to children without SOR. Biophysical properties from NODDI can explain the hemispheric lateralization of white matter microstructure in children. As a patient-specific ratio, the lateralization index can eliminate scanner-related and inter-individual sources of variability and thus potentially serve as a clinically useful imaging biomarker for neurodevelopmental disorders.

4.
J Autism Dev Disord ; 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180667

RESUMEN

Sensory Over-Responsivity (SOR) is an increasingly recognized challenge among children with neurodevelopmental concerns (NDC). To investigate, we characterized the incidence of auditory and tactile over-responsivity (AOR, TOR) among 82 children with NDC. We found that 70% of caregivers reported concern for their child's sensory reactions. Direct assessment further revealed that 54% of the NDC population expressed AOR, TOR, or both - which persisted regardless of autism spectrum disorder (ASD) diagnosis. These findings support the high prevalence of SOR as well as its lack of specificity to ASD. Additionally, AOR is revealed to be over twice as prevalent as TOR. These conclusions present several avenues for further exploration, including deeper analysis of the neural mechanisms and genetic contributors to sensory processing challenges.

5.
Nat Neurosci ; 25(3): 272-279, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35190729

RESUMEN

We reviewed publicly available information from the top 50 journals worldwide in psychology and neuroscience to infer the proportions of editors by gender and country of affiliation. In both fields, the proportions of male and female editors differed significantly, both across editorial roles and within various role categories. Moreover, for 76% of psychology journals and 88% of neuroscience journals more than 50% of editors were male, whereas only 20% and 10%, respectively, had a similar proportion of female editors. US-based academics outnumbered those from other countries as editors in both psychology and neuroscience beyond what would be expected from approximate rates of senior psychology and neuroscience scholars worldwide. Our findings suggest that editorial positions in academic journals-possibly one of the most powerful decision-making roles in academic psychology and neuroscience-are balanced in neither gender nor geographical representation.


Asunto(s)
Neurociencias , Publicaciones Periódicas como Asunto , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...