Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nat Med ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095594

RESUMEN

Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. In this study, we investigated functional drivers of post-treatment recurrent GBM through integrative genomic analyses, genome-wide genetic perturbation screens in patient-derived GBM models and independent lines of validation. Specific genetic dependencies were found consistent across recurrent tumor models, accompanied by increased mutational burden and differential transcript and protein expression compared to its primary GBM predecessor. Our observations suggest a multi-layered genetic response to drive tumor recurrence and implicate PTP4A2 (protein tyrosine phosphatase 4A2) as a modulator of self-renewal, proliferation and tumorigenicity in recurrent GBM. Genetic perturbation or small-molecule inhibition of PTP4A2 acts through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1) and its downstream molecular players, exploiting a functional dependency on ROBO signaling. Because a pan-PTP4A inhibitor was limited by poor penetrance across the blood-brain barrier in vivo, we engineered a second-generation chimeric antigen receptor (CAR) T cell therapy against ROBO1, a cell surface receptor enriched across recurrent GBM specimens. A single dose of ROBO1-targeted CAR T cells doubled median survival in cell-line-derived xenograft (CDX) models of recurrent GBM. Moreover, in CDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma, ROBO1 CAR T cells eradicated tumors in 50-100% of mice. Our study identifies a promising multi-targetable PTP4A-ROBO1 signaling axis that drives tumorigenicity in recurrent GBM, with potential in other malignant brain tumors.

2.
Biomolecules ; 14(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062532

RESUMEN

The ribonuclease H (RNase H) active site of HIV-1 reverse transcriptase (RT) is the only viral enzyme not targeted by approved antiretroviral drugs. Using a fluorescence-based in vitro assay, we screened 65,239 compounds at a final concentration of 10 µM to identify inhibitors of RT RNase H activity. We identified 41 compounds that exhibited 50% inhibitory concentration (i.e., IC50) values < 1.0 µM. Two of these compounds, 2-(4-methyl-3-(piperidin-1-ylsulfonyl)phenyl)benzo[d]isothiazol-3(2H)-one (1) and ethyl 2-(2-(3-oxobenzo[d]isothiazol-2(3H)-yl)thiazol-4-yl)acetate (2), which both share the same benzisothiazolone pharmacophore, demonstrate robust antiviral activity (50% effective concentrations of 1.68 ± 0.94 µM and 2.68 ± 0.54, respectively) in the absence of cellular toxicity. A limited structure-activity relationship analysis identified two additional benzisothiazolone analogs, 2-methylbenzo[d]isothiazol-3(2H)-one (3) and N,N-diethyl-3-(3-oxobenzo[d]isothiazol-2(3H)-yl)benzenesulfonamide (4), which also resulted in the inhibition of RT RNase H activity and virus replication. Compounds 1, 2 and 4, but not 3, inhibited the DNA polymerase activity of RT (IC50 values~1 to 6 µM). In conclusion, benzisothiazolone derivatives represent a new class of multifunctional RT inhibitors that warrants further assessment for the treatment of HIV-1 infection.


Asunto(s)
Transcriptasa Inversa del VIH , VIH-1 , Inhibidores de la Transcriptasa Inversa , Tiazoles , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/síntesis química , Humanos , VIH-1/efectos de los fármacos , VIH-1/enzimología , Tiazoles/farmacología , Tiazoles/química , Ribonucleasa H/antagonistas & inhibidores , Ribonucleasa H/metabolismo , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/síntesis química , Descubrimiento de Drogas , Relación Estructura-Actividad
3.
J Pharmacol Exp Ther ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580450

RESUMEN

The oncogenic protein tyrosine phosphatase PTP4A3 is frequently overexpressed in human ovarian cancers and is associated with poor patient prognosis. PTP4A3 is thought to regulate multiple oncogenic signaling pathways, including STAT3, SRC, and ERK. The objective of this study was to generate ovarian cancer cells with genetically depleted PTP4A3; to assess their tumorigenicity; to examine their cellular phenotype; and to uncover changes in their intracellular signaling pathways and cytokine release profiles. Genetic deletion of PTP4A3 using CRISPR/Cas9 enabled the generation of individual clones derived from single cells isolated from the polyclonal knockout population. We observed a >90% depletion of PTP4A3 protein levels by Western blotting in the clonal cell lines compared to the sham transfected wildtype population. The wildtype and polyclonal knockout cell lines shared similar monolayer growth rates, while the isolated clonal populations 2B4, 3C9, and 3C12 exhibited significantly lower monolayer growth characteristics consistent with their lower PTP4A3 levels. The clonal PTP4A3 knockout cell lines also had substantially lower in vitro colony formation efficiencies compared to the wildtype cells and were less tumorigenic in vivo The clonal knockout cells were markedly less responsive to IL-6-stimulated migration in a scratch wound assay compared to the wildtype cells. Antibody microarray assays documented differences in cytokine release and intracellular phosphorylation patterns in the PTP4A3 deleted clones. Bioinformatic network analyses indicated alterations in cellular signaling nodes. These biochemical changes could ultimately form the foundation for pharmacodynamic endpoints useful for emerging anti-PTP4A3 therapeutics. Significance Statement Clones of high grade serous ovarian cancer cells were isolated in which the oncogenic phosphatase PTP4A3 was deleted using CRISPR/Cas9 methodologies. The PTP4A3 null cells exhibited loss of in vitro proliferation, colony formation, and migration, and reduced in vivo tumorigenesis. Marked differences in intracellular protein phosphorylation and cytokine release were seen. The newly developed PTP4A3 knockout cells should provide useful tools to probe the role of PTP4A3 phosphatase in ovarian cancer cell survival, tumorigenicity and cell signaling.

4.
FEBS J ; 290(20): 4950-4965, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428551

RESUMEN

Neuronal differentiation and maturation are extended developmental processes. To determine whether neurons at different developmental stages have divergent chemosensitivities, we screened differentiating and maturing neuronal populations using a small compound library comprising FDA-approved and investigational drugs. Using a neurotoxicity assay format, both respective neuronal population-based screening campaigns performed robustly (Z-factors = 0.7-0.8), although the hit rate for the differentiating neurons (2.8%) was slightly higher than for maturing neurons (1.9%). While the majority of hits were toxic to both neuronal populations, these hits predominantly represented promiscuous drugs. Other drugs were selectively neurotoxic, with receptor tyrosine kinase inhibitors disproportionally represented after confirmation. Ponatinib and amuvatinib were neuroinhibitory for differentiating and maturing neurons, respectively. Chemoinformatic analyses confirmed differences in potential drug targets that may be differentially expressed during neuronal development. Subsequent studies demonstrated neuronal expression of AXL, an amuvatinib target, in both neuronal populations. However, functional AXL activity was confirmed only in the maturing neuronal population as determined by AXL phosphorylation in response to GAS6, the cognate ligand of AXL, and concurrent STAT3Y705 phosphorylation. Differentiating neurons were unresponsive to the effects of GAS6 suggesting that the AXL-STAT3 signaling axis was nonfunctional. Amuvatinib treatment of maturing neuronal cultures significantly reduced pAXL levels. These studies indicate that neuronal developmental states may exhibit unique chemosensitivities and that drugs may have different neuro-inhibitory effects depending upon the developmental stage of the neuronal population.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteínas Tirosina Quinasas Receptoras , Humanos , Proteínas Tirosina Quinasas Receptoras/genética , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuronas/metabolismo
5.
SLAS Discov ; 28(6): 249-254, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36796645

RESUMEN

The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, Old Dominion University, and a university spinout company, KeViRx, Inc., partnered under a NIH Small Business Innovation Research grant, to produce potential therapeutics for acute respiratory distress syndrome resulting from the ongoing COVID-19 pandemic.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , SARS-CoV-2 , Pandemias , Virginia , Desarrollo de Medicamentos , Descubrimiento de Drogas , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
6.
J Pharmacol Exp Ther ; 384(3): 429-438, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36627205

RESUMEN

Protein tyrosine phosphatase type IVA member 3 (PTP4A3 or PRL-3) is a nonreceptor, oncogenic, dual-specificity phosphatase that is highly expressed in many human tumors, including ovarian cancer, and is associated with a poor patient prognosis. Recent studies suggest that PTP4A3 directly dephosphorylates SHP-2 phosphatase as part of a STAT3-PTP4A3 feedforward loop and directly dephosphorylates p38 kinase. The goal of the current study was to examine the effect of a PTP4A phosphatase inhibitor, 7-imino-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (JMS-053), on ovarian cancer STAT3, SHP-2, and p38 kinase phosphorylation. JMS-053 caused a concentration- and time-dependent decrease in the activated form of STAT3, Y705 phospho-STAT3, in ovarian cancer cells treated in vitro. In contrast, the phosphorylation status of two previously described direct PTP4A3 substrates, SHP-2 phosphatase and p38 kinase, were rapidly increased with JMS-053 treatment. We generated A2780 and OVCAR4 ovarian cancer cells resistant to JMS-053, and the resulting cells were not crossresistant to paclitaxel, cisplatin, or teniposide. JMS-053-resistant A2780 and OVCAR4 cells exhibited a 95% and 50% decrease in basal Y705 phospho-STAT3, respectively. JMS-053-resistant OVCAR4 cells had an attenuated phosphorylation and migratory response to acute exposure to JMS-053. These results support a regulatory role for PTP4A phosphatase in ovarian cancer cell STAT3 and p38 signaling circuits. SIGNIFICANCE STATEMENT: This study demonstrates that chemical inhibition of PTP4A phosphatase activity with JMS-053 decreases STAT3 activation and increases SHP-2 phosphatase and p38 kinase phosphorylation activation in ovarian cancer cells. The newly developed JMS-053-resistant ovarian cancer cells should provide useful tools to further probe the role of PTP4A phosphatase in ovarian cancer cell survival and cell signaling.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Línea Celular Tumoral , Fosforilación , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 14 Activada por Mitógenos
7.
SLAS Discov ; 28(6): 275-283, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36273809

RESUMEN

Human induced pluripotent stem cell (iPSC)-derived neurons are being increasingly used for high content imaging and screening. However, iPSC-derived neuronal differentiation and maturation is time-intensive, often requiring >8 weeks. Unfortunately, the differentiating and maturing iPSC-derived neuronal cultures also tend to migrate and coalesce into ganglion-like clusters making single-cell analysis challenging, especially in miniaturized formats. Using our defined extracellular matrix and low oxygen culturing conditions for the differentiation and maturation of human cortical neurons, we further modified neuronal progenitor cell seeding densities and feeder layer-free culturing conditions in miniaturized formats (i.e., 96 well) to decrease neuronal clustering, enhance single-cell identification and reduce edge effects usually observed after extended neuronal cell culture. Subsequent algorithm development refined capabilities to distinguish and identify single mature neurons, as identified by NeuN expression, from large cellular aggregates, which were excluded from image analysis. Incorporation of astrocyte conditioned medium during differentiation and maturation periods significantly increased the percentage (i.e., ∼10% to ∼30%) of mature neurons (i.e., NeuN+) detected at 4-weeks post-differentiation. Pilot, proof of concept studies using this optimized assay system yielded negligible edge effects and robust Z-factors in population-based as well as image-based neurotoxicity assay formats. Moreover, moxidectin, an FDA-approved drug with documented neurotoxic adverse effects, was identified as a hit using both screening formats. This miniaturized, feeder layer-free format and image analysis algorithm provides a foundational imaging and screening platform, which enables quantitative single-cell analysis of differentiated human neurons.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Neuronas/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Astrocitos
8.
J Alzheimers Dis ; 86(1): 365-386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35034904

RESUMEN

BACKGROUND: Defining cellular mechanisms that drive Alzheimer's disease (AD) pathogenesis and progression will be aided by studies defining how gene expression patterns change during pre-symptomatic AD and ensuing periods of declining cognition. Previous studies have emphasized changes in transcriptome, but not translatome regulation, leaving the ultimate results of gene expression alterations relatively unexplored in the context of AD. OBJECTIVE: To identify genes whose expression might be regulated at the transcriptome and translatome levels in AD, we analyzed gene expression in cerebral cortex of two AD model mouse strains, CVN (APPSwDI;NOS2 -/- ) and Tg2576 (APPSw), and their companion wild type (WT) strains at 6 months of age by tandem RNA-Seq and Ribo-Seq (ribosome profiling). METHODS: Identical starting pools of bulk RNA were used for RNA-Seq and Ribo-Seq. Differential gene expression analysis was performed at the transcriptome, translatome, and translational efficiency levels. Regulated genes were functionally evaluated by gene ontology tools. RESULTS: Compared to WT mice, AD model mice had similar levels of transcriptome regulation, but differences in translatome regulation. A microglial signature associated with early stages of Aß accumulation was upregulated at both levels in CVN mice. Although the two mice strains did not share many regulated genes, they showed common regulated pathways related to AßPP metabolism associated with neurotoxicity and neuroprotection. CONCLUSION: This work represents the first genome-wide study of brain translatome regulation in animal models of AD and provides evidence of a tight and early translatome regulation of gene expression controlling the balance between neuroprotective and neurodegenerative processes in brain.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Ratones Transgénicos , Microglía/metabolismo , Transcriptoma
9.
Biomolecules ; 11(7)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209460

RESUMEN

High grade serous ovarian cancer (OvCa) frequently becomes drug resistant and often recurs. Consequently, new drug targets and therapies are needed. Bioinformatics-based studies uncovered a relationship between high Protein Tyrosine Phosphatase of Regenerating Liver-3 (PRL3 also known as PTP4A3) expression and poor patient survival in both early and late stage OvCa. PTP4A3 mRNA levels were 5-20 fold higher in drug resistant or high grade serous OvCa cell lines compared to nonmalignant cells. JMS-053 is a potent allosteric small molecule PTP4A3 inhibitor and to explore further the role of PTP4A3 in OvCa, we synthesized and interrogated a series of JMS-053-based analogs in OvCa cell line-based phenotypic assays. While the JMS-053 analogs inhibit in vitro PTP4A3 enzyme activity, none were superior to JMS-053 in reducing high grade serous OvCa cell survival. Because PTP4A3 controls cell migration, we interrogated the effect of JMS-053 on this cancer-relevant process. Both JMS-053 and CRISPR/Cas9 PTP4A3 depletion blocked cell migration. The inhibition caused by JMS-053 required the presence of PTP4A3. JMS-053 caused additive or synergistic in vitro cytotoxicity when combined with paclitaxel and reduced in vivo OvCa dissemination. These results indicate the importance of PTP4A3 in OvCa and support further investigations of the lead inhibitor, JMS-053.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Bases de Datos Genéticas , Femenino , Humanos , Iminas/química , Iminas/farmacología , Proteínas de Neoplasias/fisiología , Neoplasias Ováricas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Piridinas/química , Piridinas/farmacología
10.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L477-L484, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34156871

RESUMEN

Acute lung injury (ALI) leading to acute respiratory distress syndrome is the major cause of COVID-19 lethality. Cell entry of SARS-CoV-2 occurs via the interaction between its surface spike protein (SP) and angiotensin-converting enzyme-2 (ACE2). It is unknown if the viral spike protein alone is capable of altering lung vascular permeability in the lungs or producing lung injury in vivo. To that end, we intratracheally instilled the S1 subunit of SARS-CoV-2 spike protein (S1SP) in K18-hACE2 transgenic mice that overexpress human ACE2 and examined signs of COVID-19-associated lung injury 72 h later. Controls included K18-hACE2 mice that received saline or the intact SP and wild-type (WT) mice that received S1SP. K18-hACE2 mice instilled with S1SP exhibited a decline in body weight, dramatically increased white blood cells and protein concentrations in bronchoalveolar lavage fluid (BALF), upregulation of multiple inflammatory cytokines in BALF and serum, histological evidence of lung injury, and activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways in the lung. K18-hACE2 mice that received either saline or SP exhibited little or no evidence of lung injury. WT mice that received S1SP exhibited a milder form of COVID-19 symptoms, compared with the K18-hACE2 mice. Furthermore, S1SP, but not SP, decreased cultured human pulmonary microvascular transendothelial resistance (TER) and barrier function. This is the first demonstration of a COVID-19-like response by an essential virus-encoded protein by SARS-CoV-2 in vivo. This model of COVID-19-induced ALI may assist in the investigation of new therapeutic approaches for the management of COVID-19 and other coronaviruses.


Asunto(s)
Lesión Pulmonar Aguda/patología , COVID-19/complicaciones , Permeabilidad de la Membrana Celular , Células Endoteliales/patología , Pulmón/patología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/virología , Humanos , Pulmón/metabolismo , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Subunidades de Proteína , Glicoproteína de la Espiga del Coronavirus/genética , Replicación Viral
11.
Bioorg Med Chem Lett ; 46: 128167, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34089839

RESUMEN

We developed JMS-053, a potent inhibitor of the dual specificity phosphatase PTP4A3 that is potentially suitable for cancer therapy. Due to the emerging role of the unfolded protein response (UPR) in cancer pathology, we sought to identify derivatives that combine PTP4A3 inhibition with induction of endoplasmatic reticulum (ER) stress, with the goal to generate more potent anticancer agents. We have now generated bifunctional analogs that link the JMS-053 pharmacophore to an adamantyl moiety and act in concert with the phosphatase inhibitor to induce ER stress and cell death. The most potent compound in this series, 7a, demonstrated a ca. 5-fold increase in cytotoxicity in a breast cancer cell line and strong activation of UPR and ER stress response genes in spite of a ca. 13-fold decrease in PTP4A3 inhibition. These results demonstrate that the combination of phosphatase inhibition with UPR/ER-stress upregulation potentiates efficacy.


Asunto(s)
Antineoplásicos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Iminas/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Piridinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Femenino , Humanos , Iminas/síntesis química , Iminas/química , Estructura Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
12.
ACS Infect Dis ; 7(2): 506-517, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33529014

RESUMEN

Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis affecting human populations, yet CL remains largely ignored in drug discovery programs. CL causes disfiguring skin lesions and often relapses after "clinical cure" using existing therapeutics. To expand the pool of anti-CL lead candidates, we implemented an integrated screening platform comprising three progressive Leishmania parasite life cycle forms. We identified tretazicar (CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide) as a potent inhibitor of Leishmania parasite viability across multiple Leishmania species, which translated into complete and prolonged in vivo suppression of CL lesion formation in BALB/c mice when used as a monotherapy and which was superior to liposomal amphotericin B. In addition, oral twice a day administration of tretazicar healed the majority of existing Leishmania major (L. major) cutaneous lesions. In drug combination studies, there was a strong potentiation when subtherapeutic doses of liposomal amphotericin B and tretazicar were simultaneously administered. This drug combination decreased L. major lesion size in mice earlier than individual monotherapy drug treatments and maintained all animals lesion free for up to 64 days after treatment cessation. In contrast, administration of subtherapeutic doses of tretazicar or amphotericin B as monotherapies resulted in no or partial lesion cures, respectively. We propose that tretazicar should be explored as a component of a systemic CL combination therapy and potentially for other diseases where amphotericin B is a first line therapy.


Asunto(s)
Antiprotozoarios , Leishmania major , Anfotericina B , Animales , Antiprotozoarios/farmacología , Aziridinas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C
13.
Mol Pharmacol ; 98(6): 648-657, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32978326

RESUMEN

Protein tyrosine phosphatase (PTP) 4A3 is frequently overexpressed in human solid tumors and hematologic malignancies and is associated with tumor cell invasion, metastasis, and a poor patient prognosis. Several potent, selective, and allosteric small molecule inhibitors of PTP4A3 were recently identified. A lead compound in the series, JMS-053 (7-imino-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione), has a long plasma half-life (∼ 24 hours) in mice, suggesting possible binding to serum components. We confirmed by isothermal titration calorimetry that JMS-053 binds to human serum albumin. A single JMS-053 binding site was identified by X-ray crystallography in human serum albumin at drug site 3, which is also known as subdomain IB. The binding of JMS-053 to human serum albumin, however, did not markedly alter the overall albumin structure. In the presence of serum albumin, the potency of JMS-053 as an in vitro inhibitor of PTP4A3 and human A2780 ovarian cancer cell growth was reduced. The reversible binding of JMS-053 to serum albumin may serve to increase JMS-053's plasma half-life and thus extend the delivery of the compound to tumors. SIGNIFICANCE STATEMENT: X-ray crystallography revealed that a potent, reversible, first-in-class small molecule inhibitor of the oncogenic phosphatase protein tyrosine phosphatase 4A3 binds to at least one site on human serum albumin, which is likely to extend the compound's plasma half-life and thus assist in drug delivery into tumors.


Asunto(s)
Iminas/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Piridinas/farmacología , Albúmina Sérica Humana/metabolismo , Sitios de Unión , Calorimetría , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Pruebas de Enzimas , Semivida , Humanos , Iminas/química , Iminas/uso terapéutico , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteínas Tirosina Fosfatasas/metabolismo , Piridinas/química , Piridinas/uso terapéutico , Albúmina Sérica Humana/ultraestructura
14.
Int J Mol Sci ; 21(7)2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32260565

RESUMEN

We have previously shown the delivery of phosphatase of regenerating liver-1 (PRL-1) to the immunological synapse (IS) and proposed a regulatory role of the catalytic activity of PRLs (PRL-1, PRL-2 and PRL-3) in antigen-induced IL-2 production. Nonetheless, the expression in T cells and delivery to the IS of the highly homologous PRL-3, as well as the role of the catalytic activity of PRLs in antigen-induced early signaling, has not been investigated. Here, the expression of PRL-3 protein was detected in primary CD4 T cells and in the CD4 T cell line Jurkat (JK), in which an overexpressed GFP-PRL-3 fluorescent fusion protein trafficked through the endosomal recycling compartment and co-localized with PLCγ1 signaling sites at the IS. Pharmacological inhibition was used to compare the role of the catalytic activity of PRLs in antigen-induced early signaling and late IL-2 production. Although the phosphatase activity of PRLs was not critical for early signaling triggered by antigen, it seemed to regulate signaling dynamics and was necessary for proper IL-2 production. We propose that enzymatic activity of PRLs has a higher significance for cytokine production than for early signaling at the IS. However, further research will be necessary to deeply understand the regulatory role of PRLs during lymphocyte activation and effector function.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interleucina-2/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , Endosomas/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Iminas/farmacología , Interleucina-2/genética , Células Jurkat , Activación de Linfocitos , Proteínas de Neoplasias/antagonistas & inhibidores , Fosfolipasa C gamma/metabolismo , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Piridinas/farmacología
15.
Neurobiol Aging ; 90: 125-134, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32184029

RESUMEN

A hexanucleotide repeat expansion on chromosome 9 open reading frame 72 (C9orf72) is associated with familial amyotrophic lateral sclerosis (ALS) and a subpopulation of patients with sporadic ALS and frontotemporal dementia. We used inducible pluripotent stem cells from neurotypic and C9orf72+ (C9+) ALS patients to derive neuronal progenitor cells. We demonstrated that C9+ and neurotypic neuronal progenitor cells differentiate into neurons. The C9+ neurons, however, spontaneously re-expressed cyclin D1 after 12 weeks, suggesting cell cycle re-engagement. Gene profiling revealed significant increases in senescence-associated genes in C9+ neurons. Moreover, C9+ neurons expressed high levels of mRNA for CXCL8, a chemokine overexpressed by senescent cells, while media from C9+ neurons contained significant levels of CXCL8, CXCL1, IL13, IP10, CX3CL1, and reactive oxygen species, which are components of the senescence-associated secretory phenotype. Thus, re-engagement of cell cycle-associated proteins and a senescence-associated secretory phenotype could be fundamental components of neuronal dysfunction in ALS and frontotemporal dementia.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Ciclo Celular/genética , Senescencia Celular/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Pluripotentes Inducidas/patología , Células Madre/patología , Células Cultivadas , Expresión Génica , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Assay Drug Dev Technol ; 18(2): 97-103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31095406

RESUMEN

Neurological diseases comprise more than a thousand ailments that adversely affect the brain and nervous system. When grouped together, these neurological conditions impact an estimated 100 million individuals in the United States and up to a billion people worldwide, making drug discovery efforts imperative. However, recent research and development efforts for these neurological diseases, including Alzheimer's disease and amyotrophic lateral sclerosis, have been exceedingly disappointing and typify the challenges associated with translating in vitro and cell-based discoveries to successful preclinical models and subsequent human clinical trials. Our viewpoint is that neuronal progenitor cells and neurons derived from inducible pluripotent stem cells afford an innovative translational bridge, with higher pathological relevancy than previous cellular models. We outline some of the opportunities and challenges associated with their evolving usage in drug discovery and development.


Asunto(s)
Descubrimiento de Drogas , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuronas/metabolismo , Neuronas/patología
17.
Pharmacol Res Perspect ; 7(6): e00527, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31624635

RESUMEN

Cancer is a dreaded word, which has stimulated monumental efforts to discover and deliver effective cancer treatments for more than half a century. During the past two decades, our understanding of the molecular pathogenesis of cancer has increased remarkably. This has fostered an explosion in the number of experimental agents and clinical trials coupled with a dramatic rise in the regulatory approval of therapies for human cancers. Unfortunately, our preclinical models perform poorly as predictive platforms for the ultimate success of clinical candidates, reflecting the complexity of cancer. Moreover the common combination of cancer drugs prescribes the need for a better understanding of the fundamental pharmacology of each agent. Here I briefly outline some of the fundamental changes that have and have not occurred in cancer pharmacology during the past two decades and prognosticate on possible future directions.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inmunoterapia/métodos , Oncología Médica/métodos , Neoplasias/terapia , Medicina de Precisión/métodos , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Inmunoterapia/tendencias , Oncología Médica/tendencias , Neoplasias/genética , Neoplasias/inmunología , Medicina de Precisión/tendencias , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
18.
J Pharmacol Exp Ther ; 371(3): 652-662, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31601683

RESUMEN

Oncogenic protein tyrosine phosphatases (PTPs) are overexpressed in numerous human cancers but they have been challenging pharmacological targets. The emblematic oncogenic PTP4A tyrosine phosphatase family regulates many fundamental malignant processes. 7-Imino-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (JMS-053) is a novel, potent, and selective PTP4A inhibitor but its mechanism of action has not been fully elucidated, nor has the chemotype been fully investigated. Because tyrosine phosphatases are notoriously susceptible to oxidation, we interrogated JMS-053 and three newly synthesized analogs with specific attention on the role of oxidation. JMS-053 and its three analogs were potent in vitro PTP4A3 inhibitors, but 7-imino-5-methyl-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (NRT-870-59) appeared unique among the thienopyridinediones with respect to its inhibitory specificity for PTP4A3 versus both a PTP4A3 A111S mutant and an oncogenic dual specificity tyrosine phosphatase, CDC25B. Like JMS-053, NRT-870-59 was a reversible PTP4A3 inhibitor. All of the thienopyridinediones retained cytotoxicity against human ovarian and breast cancer cells grown as pathologically relevant three-dimensional spheroids. Inhibition of cancer cell colony formation by NRT-870-59, like JMS-053, required PTP4A3 expression. JMS-053 failed to generate significant detectable reactive oxygen species in vitro or in cancer cells. Mass spectrometry results indicated no disulfide bond formation or oxidation of the catalytic Cys104 after in vitro incubation of PTP4A3 with JMS-053 or NRT-870-59. Gene expression profiling of cancer cells exposed to JMS-053 phenocopied many of the changes seen with the loss of PTP4A3 and did not indicate oxidative stress. These data demonstrate that PTP4A phosphatases can be selectively targeted with small molecules that lack prominent reactive oxygen species generation and encourage further studies of this chemotype. SIGNIFICANCE STATEMENT: Protein tyrosine phosphatases are emerging as important contributors to human cancers. We report on a new class of reversible protein phosphatase small molecule inhibitors that are cytotoxic to human ovarian and breast cancer cells, do not generate significant reactive oxygen species in vitro and in cells, and could be valuable lead molecules for future studies of PTP4A phosphatases.


Asunto(s)
Antineoplásicos/farmacología , Iminas/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Piridinas/farmacología , Piridonas/farmacología , Línea Celular Tumoral , Humanos , Mutación , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatasas/genética , Especies Reactivas de Oxígeno/metabolismo
19.
Bioorg Med Chem Lett ; 29(16): 2008-2015, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307888

RESUMEN

Protein tyrosine phosphatases (PTPs) are emerging new targets for drug discovery. PTPs and protein tyrosine kinases (PTKs) maintain cellular homeostasis through opposing roles: tyrosine O-dephosphorylation and -phosphorylation, respectively. An imbalance in the phosphorylation equilibrium results in aberrant protein signaling and pathophysiological conditions. PTPs have historically been considered 'undruggable', in part due to a lack of evidence defining their relationship to disease causality and a focus on purely competitive inhibitors. However, a better understanding of protein-protein interfaces and shallow active sites has recently renewed interest in the pursuit of allosteric and orthosteric modulators of targets outside the major druggable protein families. While their biological mechanism of action still remains to be clarified, PTP4A1-3 (also referred to as PRL1-3) are validated oncology targets and play an important role in cell proliferation, metastasis, and tumor angiogenesis. In this Digest, recent syntheses and structure-activity relationships (SAR) of small molecule inhibitors (SMIs) of PTP4A1-3 are summarized, and enzyme docking studies of the most potent chemotype are highlighted. In particular, the thienopyridone scaffold has emerged as a potent lead structure to interrogate the function and druggability of this dual-specificity PTP.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Animales , Dominio Catalítico , Línea Celular Tumoral , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Piridonas/síntesis química , Piridonas/metabolismo , Piridonas/farmacología , Piridonas/uso terapéutico , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/metabolismo , Tiofenos/farmacología , Tiofenos/uso terapéutico
20.
Org Biomol Chem ; 17(9): 2448-2466, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30746541

RESUMEN

A continuous flow photooxygenation of 7-aminothieno[3,2-c]pyridin-4(5H)-ones to produce 7-iminothieno[3,2-c]pyridine-4,6(5H,7H)-diones has been developed, utilizing ambient air as the sole reactant. N-H Imines are formed as the major products, and excellent functional group tolerance and conversion on gram-scale without the need for chromatographic purification allow for facile late-stage diversification of the aminothienopyridinone scaffold. Several analogs exhibit potent in vitro inhibition of the cancer-associated protein tyrosine phosphatase PTP4A3, and the SAR supports an exploratory docking model.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Piridonas/química , Piridonas/farmacología , Tienopiridinas/química , Tienopiridinas/farmacología , Aminación , Humanos , Luz , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Oxidación-Reducción , Proteínas Tirosina Fosfatasas/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA