Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732093

RESUMEN

The chromatin organization and its dynamic remodeling determine its accessibility and sensitivity to DNA damage oxidative stress, the main source of endogenous DNA damage. We studied the role of the VRK1 chromatin kinase in the response to oxidative stress. which alters the nuclear pattern of histone epigenetic modifications and phosphoproteome pathways. The early effect of oxidative stress on chromatin was studied by determining the levels of 8-oxoG lesions and the alteration of the epigenetic modification of histones. Oxidative stress caused an accumulation of 8-oxoG DNA lesions that were increased by VRK1 depletion, causing a significant accumulation of DNA strand breaks detected by labeling free 3'-DNA ends. In addition, oxidative stress altered the pattern of chromatin epigenetic marks and the nuclear phosphoproteome pathways that were impaired by VRK1 depletion. Oxidative stress induced the acetylation of H4K16ac and H3K9 and the loss of H3K4me3. The depletion of VRK1 altered all these modifications induced by oxidative stress and resulted in losses of H4K16ac and H3K9ac and increases in the H3K9me3 and H3K4me3 levels. All these changes were induced by the oxidative stress in the epigenetic pattern of histones and impaired by VRK1 depletion, indicating that VRK1 plays a major role in the functional reorganization of chromatin in the response to oxidative stress. The analysis of the nuclear phosphoproteome in response to oxidative stress detected an enrichment of the phosphorylated proteins associated with the chromosome organization and chromatin remodeling pathways, which were significantly decreased by VRK1 depletion. VRK1 depletion alters the histone epigenetic pattern and nuclear phosphoproteome pathways in response to oxidative stress. The enzymes performing post-translational epigenetic modifications are potential targets in synthetic lethality strategies for cancer therapies.


Asunto(s)
Epigénesis Genética , Histonas , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas , Humanos , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteoma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Daño del ADN , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Línea Celular Tumoral , Acetilación , Procesamiento Proteico-Postraduccional
2.
Nucleus ; 15(1): 2353249, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38753965

RESUMEN

In the nucleus, the VRK1 Ser-Thr kinase is distributed in nucleoplasm and chromatin, where it has different roles. VRK1 expression increases in response to mitogenic signals. VRK1 regulates cyclin D1 expression at G0 exit and facilitates chromosome condensation at the end of G2 and G2/M progression to mitosis. These effects are mediated by the phosphorylation of histone H3 at Thr3 by VRK1, and later in mitosis by haspin. VRK1 regulates the apigenetic patterns of histones in processes requiring chromating remodeling, such as transcription, replication and DNA repair. VRK1 is overexpressed in tumors, facilitating tumor progression and resistance to genotoxic treatments. VRK1 also regulates the organization of Cajal bodies assembled on coilin, which are necessary for the assembly of different types of RNP complexes. VRK1 pathogenic variants cuase defects in Cajal bodies, functionally altering neurons with long axons and leading to neurological diseases, such as amyotrophic laterla sclerosis, spinal muscular atrophy, distal hereditay motor neuropathies and Charcot-Marie-Tooth.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Núcleo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Animales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
3.
J Mol Med (Berl) ; 102(6): 801-817, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38554151

RESUMEN

Rare recessive variants in the human VRK1 gene are associated with several motor neuron diseases (MND), such as amyotrophic lateral sclerosis, spinal muscular atrophy, or distal hereditary motor neuropathies (dHMN). A case with dHMN carrying two novel VRK1 gene variants, expressing Leu200Pro (L200P) and Arg387His (R387H) variant proteins, identified that these protein variants are functionally different. The Leu200Pro variant shares with several variants in the catalytic domain the loss of the kinase activity on different substrates, such as histones, p53, or coilin. However, the distal Arg387His variant and the distal Trp375* (W375X) chinese variant, both located at the end of the low complexity C-terminal region and proximal to the termination codon, retain their catalytic activity on some substrates, and mechanistically their functional impairment is different. The L200P variant, as well as most VRK1 pathogenic variants, impairs the phosphorylation of BAF and histone H4K16 acetylation, which are required for DNA attachment to the nuclear envelope and chromatin accessibility to DNA repair mechanisms, respectively. The R387H variant impairs phosphorylation of H2AX, an early step in different types of DNA damage responses. The functional variability of VRK1 protein variants and their different combinations are a likely contributor to the clinical phenotypic heterogeneity of motor neuron and neurological diseases associated with rare VRK1 pathogenic variants. KEY MESSAGES: VRK1 variants implicated in motor neuron diseases are functionally different. The L200P variant is kinase inactive, and the R387H variant is partially active. VRK1 variants alter H4K16 acetylation and loss of coilin and BAF phosphorylation. VRK1 variants alter Cajal bodies and DNA damage responses. VRK1 variant combination determines the neurological phenotype heterogeneity.


Asunto(s)
Histonas , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Humanos , Acetilación , Histonas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Femenino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Persona de Mediana Edad , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Chem Biol Interact ; 391: 110908, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367682

RESUMEN

Dynamic chromatin remodeling requires regulatory mechanisms for its adaptation to different nuclear function, which are likely to be mediated by signaling proteins. In this context, VRK1 is a nuclear Ser-Thr kinase that regulates pathways associated with transcription, replication, recombination, and DNA repair. Therefore, VRK1 is a potential regulatory, or coordinator, molecule in these processes. In this work we studied the effect that VRK1 depletion has on the basal nuclear and chromatin phosphoproteome, and their associated pathways. VRK1 depletion caused an alteration in the pattern of the nuclear phosphoproteome, which is mainly associated with nucleoproteins, ribonucleoproteins, RNA splicing and processing. Next, it was determined the changes in proteins associated with DNA damage that was induced by doxorubicin treatment. Doxorubicin alters the nuclear phosphoproteome affecting proteins implicated in DDR, including DSB repair proteins NBN and 53BP1, cellular response to stress and chromatin organization proteins. In VRK1-depleted cells, the effect of doxorubicin on protein phosphorylation was reverted to basal levels. The nuclear phosphoproteome patterns induced by doxorubicin are altered by VRK1 depletion, and is enriched in histone modification proteins and chromatin associated proteins. These results indicate that VRK1 plays a major role in processes requiring chromatin remodeling in its adaptation to different biological contexts.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cromatina , Fosforilación , Daño del ADN , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reparación del ADN , Doxorrubicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA