Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Endocrinol Metab ; 35(3): 188-200, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38030482

RESUMEN

Metabolic byproducts have conventionally been disregarded as waste products without functions. In this opinion article, we bring to light the multifaceted role of methylmalonic acid (MMA), a byproduct of the propionate metabolism pathway mostly commonly known as a clinical biomarker of vitamin B12 deficiency. MMA is normally present at low levels in the body, but increased levels can come from different sources, such as vitamin B12 deficiency, genetic mutations in enzymes related to the propionate pathway, the gut microbiota, and aggressive cancers. Here, we describe the diverse metabolic and signaling functions of MMA and discuss the consequences of increased MMA levels, such as during the aging process, for several age-related human pathologies.


Asunto(s)
Deficiencia de Vitamina B 12 , Vitamina B 12 , Humanos , Ácido Metilmalónico , Propionatos , Envejecimiento
2.
Curr Protoc ; 3(8): e877, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37638781

RESUMEN

Adult stem cells play a critical role in the maintenance and repair of the organs in which they reside. However, their function is highly dependent on the crosstalk with their niche environment that changes during development and in disease states. The niche provides signals to stem cells to activate, proliferate, self-renew, or remain in quiescence. In skeletal muscle, the niche is perturbed in disease contexts such as aging, muscular dystrophies, and cachexia. Therefore, it is important to develop methods that permit the decoupling of niche-mediated from cell-intrinsic changes that occur in muscle stem cells (MuSCs) in development and disease contexts. With the purpose of determining the effect of the niche environment on the MuSC transcriptome, function, or health, we have coupled an allogeneic stem cell transplantation system, meaning the transplantation of MuSCs from a donor mouse into a recipient host mouse, with Switching Mechanism at 5' End of RNA Template (SMART-Seq) to quantify the effects of the niche on the MuSC transcriptome in vivo. Briefly, MuSCs are isolated from a GFP reporter donor mouse (Pax7-nGFP) and transplanted into the irradiated muscles of immunocompromised allogeneic hosts. The MuSCs are re-isolated by fluorescence-activated cell sorting (FACS) after three weeks of inhabiting the heterologous niche, defined as a niche that is different from their originating niche, and sequencing-ready libraries are created. This method allows for the direct comparison of the transcriptome of stem cells before and after transplantation into a host of a different age, disease status, or genetic background. This method can be used to accurately quantify the direct effect of the niche environment on the stem cell gene expression profile and to decouple cell-intrinsic versus niche-mediated alterations in the stem cell transcriptome. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Allogeneic muscle stem cell transplantation.


Asunto(s)
Células Madre Adultas , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Humanos , Fibras Musculares Esqueléticas , Músculo Esquelético , Donantes de Tejidos
3.
Nat Commun ; 14(1): 535, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726011

RESUMEN

Adult stem cells are indispensable for tissue regeneration, but their function declines with age. The niche environment in which the stem cells reside plays a critical role in their function. However, quantification of the niche effect on stem cell function is lacking. Using muscle stem cells (MuSC) as a model, we show that aging leads to a significant transcriptomic shift in their subpopulations accompanied by locus-specific gain and loss of chromatin accessibility and DNA methylation. By combining in vivo MuSC transplantation and computational methods, we show that the expression of approximately half of all age-altered genes in MuSCs from aged male mice can be restored by exposure to a young niche environment. While there is a correlation between gene reversibility and epigenetic alterations, restoration of gene expression occurs primarily at the level of transcription. The stem cell niche environment therefore represents an important therapeutic target to enhance tissue regeneration in aging.


Asunto(s)
Células Madre Adultas , Músculo Esquelético , Masculino , Ratones , Animales , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas , Células Madre/metabolismo , Envejecimiento/fisiología
4.
FEBS J ; 290(5): 1267-1289, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35029021

RESUMEN

Muscle stem cells (MuSCs) are required for life-long muscle regeneration. In general, aging has been linked to a decline in the numbers and the regenerative potential of MuSCs. Muscle regeneration depends on the proper functioning of MuSCs, which is itself dependent on intricate interactions with its niche components. Aging is associated with both cell-intrinsic and niche-mediated changes, which can be the result of transcriptional, posttranscriptional, or posttranslational alterations in MuSCs or in the components of their niche. The interplay between cell intrinsic alterations in MuSCs and changes in the stem cell niche environment during aging and its impact on the number and the function of MuSCs is an important emerging area of research. In this review, we discuss whether the decline in the regenerative potential of MuSCs with age is the cause or the consequence of aging skeletal muscle. Understanding the effect of aging on MuSCs and the individual components of their niche is critical to develop effective therapeutic approaches to diminish or reverse the age-related defects in muscle regeneration.


Asunto(s)
Músculo Esquelético , Células Satélite del Músculo Esquelético , Músculo Esquelético/fisiología , Células Madre , Regeneración/fisiología
5.
Elife ; 112022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188098

RESUMEN

Myofibers are the main components of skeletal muscle, which is the largest tissue in the body. Myofibers are highly adaptive and can be altered under different biological and disease conditions. Therefore, transcriptional and epigenetic studies on myofibers are crucial to discover how chromatin alterations occur in the skeletal muscle under different conditions. However, due to the heterogenous nature of skeletal muscle, studying myofibers in isolation proves to be a challenging task. Single-cell sequencing has permitted the study of the epigenome of isolated myonuclei. While this provides sequencing with high dimensionality, the sequencing depth is lacking, which makes comparisons between different biological conditions difficult. Here, we report the first implementation of single myofiber ATAC-Seq, which allows for the sequencing of an individual myofiber at a depth sufficient for peak calling and for comparative analysis of chromatin accessibility under various physiological and disease conditions. Application of this technique revealed significant differences in chromatin accessibility between resting and regenerating myofibers, as well as between myofibers from a mouse model of Duchenne Muscular Dystrophy (mdx) and wild-type (WT) counterparts. This technique can lead to a wide application in the identification of chromatin regulatory elements and epigenetic mechanisms in muscle fibers during development and in muscle-wasting diseases.


Asunto(s)
Cromatina , Distrofia Muscular de Duchenne , Animales , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas , Músculo Esquelético
6.
Crit Rev Biochem Mol Biol ; 56(3): 284-300, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823731

RESUMEN

Muscle stem cells (MuSCs) also called satellite cells are the building blocks of skeletal muscle, the largest tissue in the human body which is formed primarily of myofibers. While MuSCs are the principal cells that directly contribute to the formation of the muscle fibers, their ability to do so depends on critical interactions with a vast array of nonmyogenic cells within their niche environment. Therefore, understanding the nature of communication between MuSCs and their niche is of key importance to understand how the skeletal muscle is maintained and regenerated after injury. MuSCs are rare and therefore difficult to study in vivo within the context of their niche environment. The advent of single-cell technologies, such as switching mechanism at 5' end of the RNA template (SMART) and tagmentation based technologies using hyperactive transposase, afford the unprecedented opportunity to perform whole transcriptome and epigenome studies on rare cells within their niche environment. In this review, we will delve into how single-cell technologies can be applied to the study of MuSCs and muscle-resident niche cells and the impact this can have on our understanding of MuSC biology and skeletal muscle regeneration.


Asunto(s)
Epigenoma , Estudio de Asociación del Genoma Completo , Mioblastos Esqueléticos/fisiología , Regeneración , Análisis de la Célula Individual , Nicho de Células Madre , Transcriptoma , Animales , Humanos
7.
EMBO Rep ; 21(12): e49499, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33047485

RESUMEN

The function and maintenance of muscle stem cells (MuSCs) are tightly regulated by signals originating from their niche environment. Skeletal myofibers are a principle component of the MuSC niche and are in direct contact with the muscle stem cells. Here, we show that Myf6 establishes a ligand/receptor interaction between muscle stem cells and their associated muscle fibers. Our data show that Myf6 transcriptionally regulates a broad spectrum of myokines and muscle-secreted proteins in skeletal myofibers, including EGF. EGFR signaling blocks p38 MAP kinase-induced differentiation of muscle stem cells. Homozygous deletion of Myf6 causes a significant reduction in the ability of muscle to produce EGF, leading to a deregulation in EGFR signaling. Consequently, although Myf6-knockout mice are born with a normal muscle stem cell compartment, they undergo a progressive reduction in their stem cell pool during postnatal life due to spontaneous exit from quiescence. Taken together, our data uncover a novel role for Myf6 in promoting the expression of key myokines, such as EGF, in the muscle fiber which prevents muscle stem cell exhaustion by blocking their premature differentiation.


Asunto(s)
Factores Reguladores Miogénicos , Células Madre , Animales , Diferenciación Celular/genética , Homocigoto , Ratones , Músculo Esquelético , Factores Reguladores Miogénicos/genética , Eliminación de Secuencia
9.
Bio Protoc ; 10(4): e3525, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33654749

RESUMEN

Whole transcriptome analysis is a key method in biology that allows researchers to determine the effect a condition has on gene regulation. One difficulty in RNA sequencing of muscle is that traditional methods are performed on the whole muscle, but this captures non-myogenic cells that are part of the muscle. In order to analyze only the transcriptome of myofibers we combine single myofiber isolation with SMART-Seq to provide high resolution genome wide expression of a single myofiber.

10.
Mod Pathol ; 33(5): 880-892, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31857680

RESUMEN

Hydatidiform mole (HM) is an aberrant human pregnancy characterized by excessive trophoblastic proliferation and abnormal embryonic development. HM has two morphological types, complete (CHM) and partial (PHM), and non-recurrent ones have three genotypic types, androgenetic monospermic, androgenetic dispermic, and triploid dispermic. Most available studies on risk factors predisposing to different types of HM and their malignant transformation mainly suffer from the lack of comprehensive genotypic analysis of large cohorts of molar tissues combined with accurate postmolar hCG follow-up. Moreover, 10-20% of patients with one HM have at least one non-molar miscarriage, which is higher than the frequency of two pregnancy losses in the general population (2-5%), suggesting a common genetic susceptibility to HM and miscarriages. However, the underlying causes of the miscarriages in these patients are unknown. Here, we comprehensively analyzed 204 HM, mostly from patients referred to the Quebec Registry of Trophoblastic Diseases and for which postmolar hCG monitoring is available, and 30 of their non-molar miscarriages. We revisited the risk of maternal age and neoplastic transformation across the different HM genotypic categories and investigated the presence of chromosomal abnormalities in their non-molar miscarriages. We confirm that androgenetic CHM is more prone to gestational trophoblastic neoplasia (GTN) than triploid dispermic PHM, and androgenetic dispermic CHM is more prone to high-risk GTN and choriocarcinoma (CC) than androgenetic monospermic CHM. We also confirm the association between increased maternal age and androgenetic CHM and their malignancies. Most importantly, we demonstrate for the first time that patients with an HM and miscarriages are at higher risk for aneuploid miscarriages [83.3%, 95% confidence interval (CI): 0.653-0.944] than women with sporadic (51.5%, 95% CI: 50.3-52.7%, p value = 0.0003828) or recurrent miscarriages (43.8%, 95% CI: 40.7-47.0%, p value = 0.00002). Our data suggest common genetic female germline defects predisposing to HM and aneuploid non-molar miscarriages in some patients.


Asunto(s)
Mola Hidatiforme/genética , Neoplasias Uterinas/genética , Aborto Habitual/genética , Adulto , Femenino , Genotipo , Humanos , Edad Materna , Persona de Mediana Edad , Embarazo , Factores de Riesgo
11.
J Biol Chem ; 294(52): 20097-20108, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31753917

RESUMEN

Skeletal muscle is a heterogeneous tissue. Individual myofibers that make up muscle tissue exhibit variation in their metabolic and contractile properties. Although biochemical and histological assays are available to study myofiber heterogeneity, efficient methods to analyze the whole transcriptome of individual myofibers are lacking. Here, we report on a single-myofiber RNA-sequencing (smfRNA-Seq) approach to analyze the whole transcriptome of individual myofibers by combining single-fiber isolation with Switching Mechanism at 5' end of RNA Template (SMART) technology. Using smfRNA-Seq, we first determined the genes that are expressed in the whole muscle, including in nonmyogenic cells. We also analyzed the differences in the transcriptome of myofibers from young and old mice to validate the effectiveness of this new method. Our results suggest that aging leads to significant changes in the expression of metabolic genes, such as Nos1, and structural genes, such as Myl1, in myofibers. We conclude that smfRNA-Seq is a powerful tool to study developmental, disease-related, and age-related changes in the gene expression profile of skeletal muscle.


Asunto(s)
Perfilación de la Expresión Génica/métodos , ARN Mensajero/metabolismo , Envejecimiento , Animales , Separación Celular/métodos , Biblioteca de Genes , Genoma , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , ARN Mensajero/química , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...