Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trials ; 25(1): 309, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38715140

RESUMEN

BACKGROUND: Inflamm-aging is associated with the rate of aging and is significantly related to diseases such as Alzheimer's disease, Parkinson's disease, atherosclerosis, heart disease, and age-related degenerative diseases such as type II diabetes and osteoporosis. This study aims to evaluate the safety and efficiency of autologous adipose tissue-derived mesenchymal stem cell (AD-MSC) transplantation in aging-related low-grade inflammation patients. METHODS: This study is a single-group, open-label, phase I clinical trial in which patients treated with 2 infusions (100 million cells i.v) of autologous AD-MSCs were initially evaluated in 12 inflamm-aging patients who concurrently had highly proinflammatory cytokines and 2 of the following 3 diseases: diabetes, dyslipidemia, and obesity. The treatment effects were evaluated based on plasma cytokines. RESULTS: During the study's follow-up period, no adverse effects were observed in AD-MSC injection patients. Compared to baseline (D-44), the inflammatory cytokines IL-1α, IL-1ß, IL-8, IL-6, and TNF-α were significantly reduced after 180 days (D180) of MSC infusion. IL-4/IL-10 at 90 days (D90) and IL-2/IL-10 at D180 increased, reversing the imbalance between proinflammatory and inflammatory ratios in the patients. CONCLUSION: AD-MSCs represent a potential intervention to prevent age-related inflammation in patients. TRIAL REGISTRATION: ClinicalTrials.gov number is NCT05827757, first registered on 13th Oct 2020.


Asunto(s)
Tejido Adiposo , Citocinas , Inflamación , Trasplante de Células Madre Mesenquimatosas , Trasplante Autólogo , Humanos , Femenino , Masculino , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Persona de Mediana Edad , Citocinas/sangre , Inflamación/sangre , Resultado del Tratamiento , Anciano , Envejecimiento , Mediadores de Inflamación/sangre , Factores de Tiempo , Factores de Edad , Adulto
2.
Onco Targets Ther ; 9: 4441-51, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27499638

RESUMEN

BACKGROUND: Breast cancer (BC) is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs) to treat tumor-bearing humanized mice models. MATERIALS AND METHODS: NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 10(6) cells/mice, and the survival percentage was monitored in both treated and untreated groups. RESULTS: The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. CONCLUSION: These results suggested that targeting BCSCs with DCs is a promising therapy for BC.

3.
Onco Targets Ther ; 7: 1455-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25170272

RESUMEN

BACKGROUND: Dendritic cell (DC) therapy is a promising therapy for cancer-targeting treatments. Recently, DCs have been used for treatment of some cancers. We aimed to develop an in vitro assay to evaluate DC therapy in cancer treatment using a breast cancer model. METHODS: DCs were induced from murine bone marrow mononuclear cells in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with GM-CSF (20 ng/mL) and IL-4 (20 ng/mL). Immature DCs were primed with breast cancer stem cell (BCSC)-derived antigens. BCSCs were sorted from 4T1 cell lines based on aldehyde dehydrogenase expression. A mixture of DCs and cytotoxic T lymphocytes (CTLs) were used to evaluate the inhibitory effect of antigen-primed DCs on BCSCs. BCSC proliferation and doubling time were recorded based on impedance-based cell analysis using the xCELLigence system. The specification of inhibitory effects of DCs and CTLs was also evaluated using the same system. RESULTS: The results showed that impedance-based analysis of BCSCs reflected cytotoxicity and inhibitory effects of DCs and CTLs at 72 hours. Differences in ratios of DC:CTL changed the cytotoxicity of DCs and CTLs. CONCLUSION: This study successfully used impedance-based cell analysis as a new in vitro assay to evaluate DC efficacy in cancer immunotherapy. We hope this technique will contribute to the development and improvement of immunotherapies in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA