Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Sci Food ; 8(1): 25, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702314

RESUMEN

Cultivated meat (CM) offers a sustainable and ethical alternative to conventional animal agriculture, involving cell maturation in a controlled environment. To emulate the structural complexity of traditional meat, the development of animal-free and edible scaffolds is crucial, providing vital physical and biological support during tissue development. The aligned vascular bundles of the decellularised asparagus scaffold were selected to facilitate the attachment and alignment of murine myoblasts (C2C12) and porcine adipose-derived mesenchymal stem cells (pADMSCs). Muscle differentiation was assessed through immunofluorescence staining with muscle markers, including Myosin heavy chain (MHC), Myogenin (MYOG), and Desmin. The metabolic activity of Creatine Kinase in C2C12 differentiated cells significantly increased compared to proliferated cells. Quantitative PCR analysis revealed a significant increase in Myosin Heavy Polypeptide 1 (MYH1) and MYOG expression compared to Day 0. These results highlight the application of decellularised plant scaffold (DPS) as a promising, edible material conducive to cell attachment, proliferation, and differentiation into muscle tissue. To create a CM prototype with biological mimicry, pADMSC-derived muscle and fat cells were also co-cultured on the same scaffold. The co-culture was confirmed through immunofluorescence staining of muscle markers and LipidTOX staining, revealing distinct muscle fibres and adipocytes containing lipid droplets respectively. Texture profile analysis conducted on uncooked CM prototypes and pork loin showed no significant differences in textural values. However, the pan-fried CM prototype differed significantly in hardness and chewiness compared to pork loin. Understanding the scaffolds' textural profile enhances our insight into the potential sensory attributes of CM products. DPS shows potential for advancing CM biomanufacturing.

2.
Trends Biotechnol ; 42(4): 385-388, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37949776

RESUMEN

Technological advances have increasingly provided more and better treatment options for patients with severe burns. Here, we provide a bird's-eye view of the product development process for third-degree burn wounds with considerations of the critical interaction with regulatory bodies, existing technological gaps, and future directions for skin substitutes.


Asunto(s)
Quemaduras , Piel Artificial , Humanos , Trasplante de Piel , Quemaduras/terapia , Piel
3.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769358

RESUMEN

Cell-derived matrices (CDM) are the decellularised extracellular matrices (ECM) of tissues obtained by the laboratory culture process. CDM is developed to mimic, to a certain extent, the properties of the needed natural tissue and thus to obviate the use of animals. The composition of CDM can be tailored for intended applications by carefully optimising the cell sources, culturing conditions and decellularising methods. This unique advantage has inspired the increasing use of CDM for biomedical research, ranging from stem cell niches to disease modelling and regenerative medicine. However, while much effort is spent on extracting different types of CDM and exploring their utilisation, little is spent on the scale-up aspect of CDM production. The ability to scale up CDM production is essential, as the materials are due for clinical trials and regulatory approval, and in fact, this ability to scale up should be an important factor from the early stages. In this review, we first introduce the current CDM production and characterisation methods. We then describe the existing scale-up technologies for cell culture and highlight the key considerations in scaling-up CDM manufacturing. Finally, we discuss the considerations and challenges faced while converting a laboratory protocol into a full industrial process. Scaling-up CDM manufacturing is a challenging task since it may be hindered by technologies that are not yet available. The early identification of these gaps will not only quicken CDM based product development but also help drive the advancement in scale-up cell culture and ECM extraction.


Asunto(s)
Materiales Biocompatibles/química , Bioimpresión/métodos , Matriz Extracelular/química , Medicina Regenerativa , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Humanos
4.
Biomaterials ; 33(23): 5696-705, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22594974

RESUMEN

The efficacy of calcium phosphate (CaP) ceramics in healing large bone defects is, in general, not as high as that of autologous bone grafting. Recently, we reported that CaP ceramics with osteoinductive properties were as efficient in healing an ilium defect of a sheep as autologous bone graft was, which makes this subclass of CaP ceramics a powerful alternative for bone regeneration. Although osteoinduction by CaP ceramics has been shown in several large animal models it is sporadically reported in mice. Because the lack of a robust mouse model has delayed understanding of the mechanism, we screened mice from 11 different inbred mouse strains for their responsiveness to subcutaneous implantation of osteoinductive tricalcium phosphate (TCP). In only two strains (FVB and 129S2) the ceramic induced bone formation, and in particularly, in FVB mice, bone was found in all the tested mice. We also demonstrated that other CaP ceramics induced bone formation at the same magnitude as that observed in other animal models. Furthermore, VEGF did not significantly increase TCP induced bone formation. The mouse model here described can accelerate research of osteoinductive mechanisms triggered by CaP ceramics and potentially the development of therapies for bone regeneration.


Asunto(s)
Materiales Biocompatibles/farmacología , Fosfatos de Calcio/farmacología , Cerámica/farmacología , Ratones Endogámicos/genética , Osteogénesis/efectos de los fármacos , Animales , Proteína Morfogenética Ósea 2/farmacología , Línea Celular , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...