Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Technol Cancer Res Treat ; 21: 15330338221114178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131551

RESUMEN

Chaperone-mediated autophagy (CMA) plays an important role in regulating a variety of cellular functions by selectively degrading damaged or functional proteins in the cytoplasm. One of the cellular processes in which CMA participates is the oxidative stress response. Oxidative stress regulates CMA activity, while CMA protects cells from oxidative damage by degrading oxidized proteins and preventing the accumulation of excessive reactive oxygen species (ROS). Changes in CMA activity have been found in many human diseases, and oxidative stress is also involved. Therefore, understanding the interaction mechanism of ROS and CMA will provide new targets for disease treatment. In this review, we discuss the role of CMA in combatting oxidative stress during the development of different conditions, such as aging, neurodegeneration, liver diseases, infections, pulmonary disorders, and cancers.


Asunto(s)
Antioxidantes , Autofagia Mediada por Chaperones , Antioxidantes/metabolismo , Autofagia/genética , Humanos , Lisosomas/metabolismo , Chaperonas Moleculares/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
2.
FEBS Lett ; 596(1): 128-145, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34817071

RESUMEN

The prevalence of non-alcoholic fatty liver disease (NAFLD) increases with aging. However, the mechanism of aging-related NAFLD remains unclear. Herein, we constructed an aging-related hepatic steatosis model and analyzed the differentially expressed proteins (DEPs) in livers from young and old mice using liquid chromatography-mass spectrometry. Five hundred and eighty-eight aging-related DEPs and novel pathways were identified. Aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), the most significantly upregulated protein, promoted poly(ADP-ribose) polymerase 1 (PARP1) activation in aging-related hepatic steatosis. Additionally, mice liver-specific O-GlcNAcase knockout promoted AIMP2 and PARP1 expression. O-GlcNAc transferase (OGT) overexpression and O-GlcNAcase inhibition by genetic or pharmaceutical manipulations increased AIMP2 and PARP1 levels in vitro. Mechanistically, O-GlcNAcylation increased AIMP2 protein stability, leading to its aggregation. Our study reveals O-GlcNAcylated AIMP2 as a novel pathogenic regulator of aging-related hepatic steatosis.


Asunto(s)
Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...