Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Europace ; 21(5): 822-832, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649290

RESUMEN

AIMS: Myocardial infarction (MI) alters cardiac fibre organization with unknown consequences on ventricular arrhythmia. We used diffusion tensor imaging (DTI) of three-dimensional (3D) cardiac fibres and scar reconstructions to identify the main parameters associated with ventricular arrhythmia inducibility and ventricular tachycardia (VT) features after MI. METHODS AND RESULTS: Twelve pigs with established MI and three controls underwent invasive electrophysiological characterization of ventricular arrhythmia inducibility and VT features. Animal-specific 3D scar and myocardial fibre distribution were obtained from ex vivo high-resolution contrast-enhanced T1 mapping and DTI sequences. Diffusion tensor imaging-derived parameters significantly different between healthy and scarring myocardium, scar volumes, and left ventricular ejection fraction (LVEF) were included for arrhythmia risk stratification and correlation analyses with VT features. Ventricular fibrillation (VF) was the only inducible arrhythmia in 4 out of 12 infarcted pigs and all controls. Ventricular tachycardia was also inducible in the remaining eight pigs during programmed ventricular stimulation. A DTI-based 3D fibre disorganization index (FDI) showed higher disorganization within dense scar regions of VF-only inducible pigs compared with VT inducible animals (FDI: 0.36; 0.36-0.37 vs. 0.32; 0.26-0.33, respectively, P = 0.0485). Ventricular fibrillation induction required lower programmed stimulation aggressiveness in VF-only inducible pigs than VT inducible and control animals. Neither LVEF nor scar volumes differentiated between VF and VT inducible animals. Re-entrant VT circuits were localized within areas of highly disorganized fibres. Moreover, the FDI within heterogeneous scar regions was associated with the median VT cycle length per animal (R2 = 0.5320). CONCLUSION: The amount of scar-related cardiac fibre disorganization in DTI sequences is a promising approach for ventricular arrhythmia stratification after MI.


Asunto(s)
Cicatriz , Imagen de Difusión Tensora/métodos , Corazón/fisiopatología , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/complicaciones , Miocardio/patología , Taquicardia Ventricular , Animales , Cicatriz/diagnóstico por imagen , Cicatriz/patología , Cicatriz/fisiopatología , Medición de Riesgo , Porcinos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiología , Taquicardia Ventricular/fisiopatología
2.
Europace ; 21(1): 163-174, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239689

RESUMEN

AIMS: We aimed to study the differences in biventricular scar characterization using bipolar voltage mapping compared with state-of-the-art in vivo delayed gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) imaging and ex vivo T1 mapping. METHODS AND RESULTS: Ten pigs with established myocardial infarction (MI) underwent in vivo scar characterization using LGE-CMR imaging and high-density voltage mapping of both ventricles using a 3.5-mm tip catheter. Ex vivo post-contrast T1 mapping provided a high-resolution reference. Voltage maps were registered onto the left and right ventricular (LV and RV) endocardium, and epicardium of CMR-based geometries to compare voltage-derived scars with surface-projected 3D scars. Voltage-derived scar tissue of the LV endocardium and the epicardium resembled surface projections of 3D in vivo and ex vivo CMR-derived scars using 1-mm of surface projection distance. The thinner wall of the RV was especially sensitive to lower resolution in vivo LGE-CMR images, in which differences between normalized low bipolar voltage areas and CMR-derived scar areas did not decrease below a median of 8.84% [interquartile range (IQR) (3.58, 12.70%)]. Overall, voltage-derived scars and surface scar projections from in vivo LGE-CMR sequences showed larger normalized scar areas than high-resolution ex vivo images [12.87% (4.59, 27.15%), 18.51% (11.25, 24.61%), and 9.30% (3.84, 19.59%), respectively], despite having used optimized surface projection distances. Importantly, 43.02% (36.54, 48.72%) of voltage-derived scar areas from the LV endocardium were classified as non-enhanced healthy myocardium using ex vivo CMR imaging. CONCLUSION: In vivo LGE-CMR sequences and high-density voltage mapping using a conventional linear catheter fail to provide accurate characterization of post-MI scar, limiting the specificity of voltage-based strategies and imaging-guided procedures.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/diagnóstico , Cicatriz/diagnóstico por imagen , Técnicas Electrofisiológicas Cardíacas , Sistema de Conducción Cardíaco/fisiopatología , Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen , Miocardio/patología , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Cicatriz/etiología , Cicatriz/patología , Cicatriz/fisiopatología , Medios de Contraste/administración & dosificación , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Masculino , Meglumina/administración & dosificación , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Compuestos Organometálicos/administración & dosificación , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA