Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; : e202400191, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703034

RESUMEN

Herein, we report a spectroscopic study of N-acetyl-L-cysteine, an important antioxidant drug, using Fourier-transform microwave techniques and in isolated conditions. Two conformers are observed, where most stable structure adopts a cis disposition, and the second conformer has a lower abundance and adopts a trans disposition. The rotational constants and the barriers to methyl internal rotation are determined for each conformer, allowing a precise conformation identification. The results show that the cis form adopts an identical structure in the crystal, solution, and gas phases. Additionally, the structures are contrasted against those of cysteine.

2.
J Phys Chem Lett ; 15(7): 1908-1913, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38345549

RESUMEN

6-Aminopenicillanic acid is a penicillanic acid compound and is the active nucleus common to all penicillins. Using laser ablation techniques, we transformed the solid into the gas phase and characterized its conformational panorama by combining supersonic expansions and Fourier transform microwave techniques. Five conformers were determined, adopting different spatial configurations. Among them, the axial and equatorial forms, which are biologically relevant, have been observed. The structural similarity to d-Ala-d-Ala and the detection of both axial and equatorial forms could explain its potential as a penicillin core and its capability as an antibiotic.


Asunto(s)
Antibacterianos , Penicilinas , Conformación Molecular , Rayos Láser
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122303, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608514

RESUMEN

DOPAC, a relevant scaffold in dopamine metabolism, was probed in the gas phase and interrogated by high-resolution rotational spectroscopy. Herein, three distinct conformers were isolated in a supersonic jet and identified for the first time through an examination of the trend of the rotational constants and the dipole moment selection rules. Additionally, we examined the plausible relaxation pathways of the low-energy conformers of DOPAC, which helped us to claim the indirect detection of two additional conformers, providing conclusive experimental evidence of the flexible nature of this biomolecule. The current investigation sheds some light on the differences between jet-cooled rotational experiments and matrix-isolation infrared spectroscopy.


Asunto(s)
Dopamina , Conformación Molecular , Ácido 3,4-Dihidroxifenilacético , Espectrofotometría Infrarroja
4.
J Phys Chem Lett ; 13(42): 9991-9996, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36264108

RESUMEN

We report a detailed structural study of cytisine, an alkaloid used to help with smoking cessation, looking forward to unveiling its role as a nicotinic agonist. High-resolution rotational spectroscopy has allowed us to characterize two different conformers exhibiting axial and equatorial arrangements of the piperidinic NH group. Unexpectedly, the axial form has been found as the predominant configuration, in contrast to that observed for related molecules, such as piperidine. This anomalous behavior has been justified in terms of an intramolecular NH···N hydrogen bond. Moreover, this interaction justifies the overstabilization of the axial conformer over the equatorial one and is crucial for the mechanism of action of cytisine over the nicotinic receptor, further rationalizing its behavior as a nicotinic agonist.


Asunto(s)
Alcaloides , Receptores Nicotínicos , Agonistas Nicotínicos , Piperidinas
5.
Phys Chem Chem Phys ; 24(39): 24032-24038, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36106463

RESUMEN

Sulfanilamide, a widely used antibacterial drug, has been brought into the gas phase using laser ablation techniques, and its structure has been characterized in the isolated conditions of a supersonic expansion using Fourier transform microwave techniques. A single conformer stabilized by an N-H⋯OS intramolecular interaction in an equatorial disposition has been unequivocally characterized. To emulate the microsolvation process, we studied its hydrated cluster. The results show that a single water molecule alters the conformational preference and forces sulfanilamide to switch from its initial eclipsed configuration to a staggered disposition. The observed hydrated cluster adopts a structure in which water forms three hydrogen bonds with sulfanilamide stabilizing the molecule.


Asunto(s)
Antibacterianos , Agua , Conformación Molecular , Solventes , Sulfanilamida
6.
J Chem Phys ; 157(7): 074107, 2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-35987600

RESUMEN

An integrated experimental-computational strategy for the accurate characterization of the conformational landscape of flexible biomolecule building blocks is proposed. This is based on the combination of rotational spectroscopy with quantum-chemical computations guided by artificial intelligence tools. The first step of the strategy is the conformer search and relative stability evaluation performed by means of an evolutionary algorithm. In this step, last generation semiempirical methods are exploited together with hybrid and double-hybrid density functionals. Next, the barriers ruling the interconversion between the low-lying conformers are evaluated in order to unravel the possible fast relaxation paths. The relative stabilities and spectroscopic parameters of the "surviving" conformers are then refined using state-of-the-art composite schemes. The reliability of the computational procedure is further improved by the inclusion of vibrational and thermal effects. The final step of the strategy is the comparison between experiment and theory without any ad hoc adjustment, which allows an unbiased assignment of the spectroscopic features in terms of different conformers and their spectroscopic parameters. The proposed approach has been tested and validated for homocysteine, a highly flexible non-proteinogenic α-amino acid. The synergism of the integrated strategy allowed for the characterization of five conformers stabilized by bifurcated N-H2⋯O=C hydrogen bonds, together with an additional conformer involving a more conventional HN⋯H-O hydrogen bond. The stability order estimated from the experimental intensities as well as the number and type of conformers observed in the gas phase are in full agreement with the theoretical predictions. Analogously, a good match has been found for the spectroscopic parameters.


Asunto(s)
Inteligencia Artificial , Microondas , Baños , Homocisteína , Reproducibilidad de los Resultados , Análisis Espectral
7.
J Phys Condens Matter ; 34(29)2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35504274

RESUMEN

Herein, we report a computational investigation of the binding affinity of dexamethasone, betamethasone, chloroquine and hydroxychloroquine to SARS-CoV-2 main protease using molecular and quantum mechanics as well as molecular docking methodologies. We aim to provide information on the anti-COVID-19 mechanism of the abovementioned potential drugs against SARS-CoV-2 coronavirus. Hence, the 6w63 structure of the SARS-CoV-2 main protease was selected as potential target site for the docking analysis. The study includes an initial conformational analysis of dexamethasone, betamethasone, chloroquine and hydroxychloroquine. For the most stable conformers, a spectroscopic analysis has been carried out. In addition, global and local reactivity indexes have been calculated to predict the chemical reactivity of these molecules. The molecular docking results indicate that dexamethasone and betamethasone have a higher affinity than chloroquine and hydroxychloroquine for their theoretical 6w63 target. Additionally, dexamethasone and betamethasone show a hydrogen bond with the His41 residue of the 6w63 protein, while the interaction between chloroquine and hydroxychloroquine with this amino acid is weak. Thus, we confirm the importance of His41 amino acid as a target to inhibit the SARS-CoV-2 Mpro activity.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Aminoácidos , Betametasona , Cloroquina/química , Cloroquina/farmacología , Proteasas 3C de Coronavirus , Dexametasona/farmacología , Humanos , Hidroxicloroquina/química , Hidroxicloroquina/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología
8.
Molecules ; 27(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35335289

RESUMEN

We used high-resolution rotational spectroscopy coupled to a laser ablation source to study the conformational panorama of perillartine, a solid synthetic sweetener. Four conformers were identified under the isolation conditions of the supersonic expansion, showing that all of them present an E configuration of the C=N group with respect to the double bond of the ring. The observed structures were verified against Shallenberger-Acree-Kier's sweetness theory to shed light on the structure-sweetness relationship for this particular oxime, highlighting a deluge of possibilities to bind the receptor.


Asunto(s)
Oximas , Ciclohexenos , Enlace de Hidrógeno , Conformación Molecular , Monoterpenos , Termodinámica
9.
Angew Chem Int Ed Engl ; 61(18): e202117045, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35165988

RESUMEN

We report a state-of-the-art spectroscopic study of an archetypical barbaralone, conclusively revealing the valence tautomerism phenomena for this bistable molecular system. The two distinct 1- and 5-substituted valence tautomers have been isolated in a supersonic expansion for the first time and successfully characterized by high-resolution rotational spectroscopy. This work provides irrefutable experimental evidence of the [3,3]-rearrangement in barbaralones and highlights the use of rotational spectroscopy to analyze shape-shifting mixtures. Moreover, this observation opens the window toward the characterization of new fluxional systems in the isolation conditions of the gas phase and should serve as a reference point in the general understanding of valence tautomerism.

10.
Phys Chem Chem Phys ; 24(6): 3546-3554, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-34908061

RESUMEN

Herein, we report the first rotational study of neutral L-DOPA, an extensively used supramolecular synthon and an amino acid precursor of the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline) using broadband and narrowband Fourier transform microwave spectroscopies coupled with a laser ablation vaporization system. The spectroscopic parameters derived from the analysis of the rotational spectrum conclusively identify the existence of four distinct conformers of L-DOPA in the supersonic jet, further rejecting the previously reported catechol ring-induced conformational restriction. The analysis of the 14N nuclear quadrupole coupling hyperfine structure further revealed the orientation of the N-bearing functional group, proving the existence of stabilizing N-H⋯π interactions for the observed structures.


Asunto(s)
Levodopa , Microondas , Enlace de Hidrógeno , Conformación Molecular , Análisis Espectral
11.
Astrophys J ; 915(2)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34711994

RESUMEN

Herein we present a laboratory rotational study of cyanoacetic acid (CH2(CN)C(O)OH), an organic acid as well as a -CN bearing molecule, that is a candidate molecular system to be detected in the interstellar medium (ISM). Our investigation aims to provide direct experimental frequencies of cyanoacetic acid to guide its eventual astronomical search in low-frequency surveys. Using different jet-cooled rotational spectroscopic techniques in the time domain, we have determined a precise set of the relevant rotational spectroscopic constants, including the 14N nuclear quadrupole coupling constants for the two distinct structures, cis- and gauche- cyanoacetic acid. We believe this work will potentially allow the detection of cyanoacetic acid in the interstellar medium, whose rotational features have remained unknown until now.

12.
Angew Chem Int Ed Engl ; 60(46): 24461-24466, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496111

RESUMEN

The large amount of unstable species in the realm of interstellar chemistry drives an urgent need to develop efficient methods for the in situ generations of molecules that enable their spectroscopic characterizations. Such laboratory experiments are fundamental to decode the molecular universe by matching the interstellar and terrestrial spectra. We propose an approach based on laser ablation of nonvolatile solid organic precursors. The generated chemical species are cooled in a supersonic expansion and probed by high-resolution microwave spectroscopy. We present a proof of concept through a simultaneous formation of interstellar compounds and the first generation of aminocyanoacetylene using diaminomaleonitrile as a prototypical precursor. With this micro-laboratory, we open the door to generation of unsuspected species using precursors not typically accessible to traditional techniques such as electric discharge and pyrolysis.

13.
Chempluschem ; 86(10): 1374-1386, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34255935

RESUMEN

New spectroscopic experiments and state-of-the-art quantum-chemical computations of creatinine in different aggregation states unequivocally unveiled a significant tuning of tautomeric equilibrium by the environment: from the exclusive presence of the amine tautomer in the solid state and aqueous solution to a mixture of amine and imine tautomers in the gas phase. Quantum-chemical calculations predict the amine species as the most stable tautomer by about 30 kJ mol-1 in condensed phases. On the contrary, moving to the isolated forms, both Z and E imine isomers become more stable by about 7 kJ mol-1 . Since the imine isomers and one amine tautomer are separated by significant energy barriers, all of them should be present in the gas phase. This prediction has indeed been confirmed by high-resolution rotational spectroscopy, which provides the first experimental characterization of the elusive imine tautomer. The interpretation of the complicated hyperfine structure of the rotational spectrum, originated by three 14 N nuclei, makes it possible to use the spectral signatures as a sort of fingerprint for each individual tautomer in the complex sample.


Asunto(s)
Iminas , Agua , Creatinina , Isomerismo , Análisis Espectral
14.
J Phys Chem Lett ; 12(29): 6983-6987, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34283615

RESUMEN

We have successfully characterized the structure of testosterone, one of the essential steroids, through high-resolution rotational spectroscopy. A single conformer has been detected, and a total of 404 transitions have been fitted, allowing a precise determination of the rotational constants. It allowed us to unravel that the isolated structure of testosterone adopts an extended disposition. The results obtained in this work highlight how using laser ablation techniques in combination with Fourier transform microwave techniques allow the study of large biomolecules or common pharmaceuticals. It is an important step toward studying relevant biomolecules and developing new analytical techniques with unprecedented sensitivity and resolution.


Asunto(s)
Testosterona/química , Conformación Molecular , Análisis Espectral
15.
Angew Chem Int Ed Engl ; 60(32): 17410-17414, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34060688

RESUMEN

The unbiased, naked structures of tartaric acid, one of the most important organic compounds existing in nature and a candidate to be present in the interstellar medium, has been revealed in this work for the first time. Solid samples of its naturally occurring (R,R) enantiomer have been vaporized by laser ablation, expanded in a supersonic jet, and characterized by Fourier transform microwave spectroscopy. In the isolation conditions of the jet, we have discovered up to five different structures stabilized by intramolecular hydrogen-bond networks dominated by O-H⋅⋅⋅O=C and O-H⋅⋅⋅O motifs extended along the entire molecule. These five forms, two with an extended (trans) disposition of the carbon chain and three with a bent (gauche) disposition, can serve as a basis to represent the shape of tartaric acid. This work also reports the first set of spectroscopy data that can be used to detect tartaric acid in the interstellar medium.

16.
J Phys Chem A ; 125(10): 2121-2129, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33661002

RESUMEN

Cycloserine has in common with isoxazolidines the saturated five-membered ring, which is an important scaffold for drug design, exhibiting diverse biological activities. The most remarkable feature of these compounds is the presence of the N-O bond framed in a cyclic moiety. The lack of an accurate characterization of this structural feature in an isolated system calls for a state-of-the-art theoretical-experimental study. A quantum-chemical investigation of cycloserine unveiled the presence of 11 local energy minima, with only two of them being separated by significant barriers. This picture has been experimentally confirmed: two species have been unequivocally detected in the gas phase by means of laser ablation microwave spectroscopy, also disentangling the complicated hyperfine structure originating from the presence of two nitrogen atoms. A thorough characterization of cycloserine and isoxazolidine, benchmarked by the semiexperimental investigation of hydroxylamine, provided the first accurate determination of their structures and pointed out that the rev-DSD-PBEP86 functional is competitive with respect to explicitly correlated coupled-cluster computations. This outcome paves the way toward accurate studies of large flexible molecules.

17.
J Phys Chem Lett ; 12(4): 1316-1320, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33535759

RESUMEN

Laser spectroscopy in jets is one of the main sources of structural data from molecular aggregates. Consequently, numerous and sophisticated experimental systems have been developed to extract precise information, which is usually interpreted in the light of quantum mechanical calculations. However, even with the most sophisticated experiments, it is sometimes difficult to interpret the experimental results. We present here the example of water dimer and how after almost 70 years, the assignment of its mass-resolved IR spectrum still generates controversy that extends toward the mechanism of ionization of water aggregates.

18.
Phys Chem Chem Phys ; 22(36): 20284-20294, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32966425

RESUMEN

A dual microwave and optical spectroscopic study of a capped cysteine amino acid isolated in a supersonic expansion, combined with quantum chemistry modelling, enabled us to characterize the conformational preferences of Cys embedded in a protein chain. IR/UV double resonance spectroscopy provided evidence for the coexistence of two conformers, assigned to folded and extended backbones (with classical C7 and C5 backbone H-bonding respectively), each of them additionally stabilized by specific main-chain/side-chain H-bonding, where the sulfur atom essentially plays the role of H-bond acceptor. The folded structure was confirmed by microwave spectroscopy, which demonstrated the validity of the DFT-D methods currently used in the field. These structural and spectroscopic results, complemented by a theoretical Natural Bond Orbital analysis, enabled us to document the capacity of the weakly polar -CH2-SH side chain of Cys to adapt itself to the intrinsic local preferences of the peptide backbone, i.e., a γ-turn or a ß-sheet extended secondary structure. The corresponding local H-bonding bridges the side chain acceptor S atom to the backbone NH donor site of the same or the next residue along the chain, through a 5- or a 6-membered ring respectively.


Asunto(s)
Cisteína/análogos & derivados , Dipéptidos/química , Teoría Funcional de la Densidad , Enlace de Hidrógeno , Microondas , Modelos Químicos , Conformación Proteica , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Termodinámica
19.
Angew Chem Int Ed Engl ; 59(33): 14081-14085, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32396706

RESUMEN

The cyclohexanol homodimer acts as a delicate test model of the role of dispersion forces in intermolecular association. Whereas phenol produces a single dimer, the suppression of π interactions and the larger conformational flexibility in cyclohexanol results in multiple isomerism, with six competing dimers of the free molecule being observed in a supersonic jet expansion. Rotational spectroscopy reveals accurate structural data, specifically the formation of homo- and heterochiral diastereoisomers and the presence of both equatorial and axial forms in the dimers. Four dispersion-corrected density-functional molecular orbital calculations were tested against the experiment, with B3LYP-D3(BJ) offering good structural reproducibility with an Alrich's triple-ζ basis set. However, the prediction of the dimer energetics is largely model-dependent, thus offering a testbed for the validation of dispersion-corrected computational models.

20.
Angew Chem Int Ed Engl ; 58(45): 16002-16007, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31448858

RESUMEN

Neutral glutamine has been evaporated by laser ablation of its solid sample to seed a rare gas carrier prior to a supersonic expansion and proved by Fourier transform microwave techniques. We report on three distinct neutral conformers that show a singular non-interacting and flexible amide sidechain in contrast with the other proteinogenic aliphatic amino acids. It could explain the essential biological role of glutamine as a nitrogen source, and its unique ability to form a variety of hydrogen bonds with peptide backbones. Common computational methods fail to predict the delicate balance of intramolecular interactions controlling the geometry of the most stable conformer. The spectroscopic data here reported can be used to benchmark novel computational methods in quantum chemistry.


Asunto(s)
Glutamina/química , Análisis de Fourier , Enlace de Hidrógeno , Terapia por Láser , Microondas , Modelos Moleculares , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...