Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887380

RESUMEN

The group X secreted phospholipase A2 (PLA2G10) is present at high levels in mouse sperm acrosome. The enzyme is secreted during capacitation and amplifies the acrosome reaction and its own secretion via an autocrine loop. PLA2G10 also improves the rate of fertilization. In in vitro fertilization (IVF) experiments, sperm from Pla2g10-deficient mice produces fewer two-cell embryos, and the absence of PLA2G10 is rescued by adding recombinant enzymes. Moreover, wild-type (WT) sperm treated with recombinant PLA2G10 produces more two-cell embryos. The effects of PLA2G10 on mouse fertility are inhibited by sPLA2 inhibitors and rescued by products of the enzymatic reaction such as free fatty acids, suggesting a role of catalytic activity. However, PLA2G10 also binds to mouse PLA2R1, which may play a role in fertility. To determine the relative contribution of enzymatic activity and PLA2R1 binding in the profertility effect of PLA2G10, we tested H48Q-PLA2G10, a catalytically-inactive mutant of PLA2G10 with low enzymatic activity but high binding properties to PLA2R1. Its effect was tested in various mouse strains, including Pla2r1-deficient mice. H48Q-PLA2G10 did not trigger the acrosome reaction but was as potent as WT-PLA2G10 to improve IVF in inbred C57Bl/6 mice; however, this was not the case in OF1 outbred mice. Using gametes from these mouse strains, the effect of H48Q-PLA2G10 appeared dependent on both spermatozoa and oocytes. Moreover, sperm from C57Bl/6 Pla2r1-deficient mice were less fertile and lowered the profertility effects of H48Q-PLA2G10, which were completely suppressed when sperm and oocytes were collected from Pla2r1-deficient mice. Conversely, the effect of WT-PLA2G10 was not or less sensitive to the absence of PLA2R1, suggesting that the effect of PLA2G10 is polymodal and complex, acting both as an enzyme and a ligand of PLA2R1. This study shows that the action of PLA2G10 on gametes is complex and can simultaneously activate the catalytic pathway and the PLA2R1-dependent receptor pathway. This work also shows for the first time that PLA2G10 binding to gametes' PLA2R1 participates in fertilization optimization.


Asunto(s)
Semen , Espermatozoides , Animales , Fertilización , Fertilización In Vitro , Fosfolipasas A2 Grupo X/metabolismo , Fosfolipasas A2 Grupo X/farmacología , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Semen/metabolismo , Espermatozoides/metabolismo
2.
Mol Cell Endocrinol ; 518: 110964, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738444

RESUMEN

The spermatozoon is a highly differentiated cell with unique characteristics: it is mobile, thanks to its flagellum, and is very compact. The sperm cytoplasm is extremely reduced, containing no ribosomes, and therefore does not allow translation, and its nucleus contains very closed chromatin, preventing transcription. This DNA compaction is linked to the loss of nucleosomes and the replacement of histones by protamines. Based on these characteristics, sperm was considered to simply deliver paternal DNA to the oocyte. However, some parts of the sperm DNA remain organized in a nucleosomal format, and bear epigenetic information. In addition, the nucleus and the cytoplasm contain a multitude of RNAs of different types, including non-coding RNAs (ncRNAs) which also carry epigenetic information. For a long time, these RNAs were considered residues of spermatogenesis. After briefly describing the mechanisms of compaction of sperm DNA, we focus this review on the origin and function of the different ncRNAs. We present studies demonstrating the importance of these RNAs in embryonic development and transgenerational adaptation to stress. We also look at other epigenetic marks, such as DNA methylation or post-translational modifications of histones, and show that they are sensitive to environmental stress and transmissible to offspring. The post-fertilization role of certain sperm-borne proteins is also discussed.


Asunto(s)
Epigénesis Genética/fisiología , Herencia Paterna/genética , Espermatozoides/fisiología , Animales , ADN/metabolismo , Desarrollo Embrionario/fisiología , Femenino , Fertilización/fisiología , Humanos , Masculino , Mamíferos , Embarazo , Procesamiento Proteico-Postraduccional/fisiología , Estrés Fisiológico/fisiología
3.
Andrology ; 8(6): 1795-1804, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32609951

RESUMEN

BACKGROUND: The effects of PPIs on human sperm fertilizing capacity were poorly investigated although these drugs are widely over-used. Two publications retrospectively studied relationships between any PPI intake and sperm parameters from patients consulting at infertility clinics, but the conclusions of these reports were contradictory. Only two reports investigated the effects of lansoprazole and omeprazole on sperm motility and found lansoprazole to be deleterious and omeprazole to be neutral for sperm motility. The inconsistency of the PPI effect in the previous reports emphasizes the need for more basic research on human spermatozoa, taking into account the hypothesis that the different PPI drugs may have different effects on sperm physiology. OBJECTIVES: Do PPIs, which are among the most widely sold drug in the word, impact negatively human sperm capacitation and sperm motility? MATERIALS AND METHODS: The effects of PPIs on human sperm maturation and motility were analyzed by CASA, flow cytometry, and Western blot. RESULTS: We tested the impact of 6 different PPIs on human sperm motility and capacitation. We showed that pantoprazole, but not the other PPIs, decreased sperm progressive motility and capacitation-induced sperm hyperactivation. We therefore investigated further the effects of pantoprazole on sperm capacitation, and we observed that it had a significant deleterious effect on the capacitation-induced hyperpolarization of the membrane potential and capacitation-associated protein phosphorylation. DISCUSSION AND CONCLUSION: Our results indicate that exposure to pantoprazole has an adverse effect on the physiological competence of human spermatozoa. As the capacitation process takes place within the female tract, our results suggest that PPIs intake by the female partner may impair in vivo sperm maturation and possibly fertilization. Moreover, the absence of adverse effect by PPIs on mouse sperm emphasizes the need to develop reprotox assays using human material to better assess the effects of medication intake on sperm physiology.


Asunto(s)
Pantoprazol/efectos adversos , Inhibidores de la Bomba de Protones/efectos adversos , Análisis de Semen/métodos , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , 2-Piridinilmetilsulfinilbencimidazoles/efectos adversos , 2-Piridinilmetilsulfinilbencimidazoles/farmacología , Adulto , Fertilización/efectos de los fármacos , Humanos , Lansoprazol/efectos adversos , Lansoprazol/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Persona de Mediana Edad , Omeprazol/efectos adversos , Omeprazol/farmacología , Pantoprazol/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de la Bomba de Protones/farmacología , Rabeprazol/efectos adversos , Rabeprazol/farmacología , Estudios Retrospectivos , Maduración del Esperma/fisiología , Espermatozoides/fisiología , Adulto Joven
4.
Theriogenology ; 131: 113-122, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30959437

RESUMEN

Assisted reproductive technologies (ART) are widely used for both humans and domestic animals. In bovine species, in vitro embryo production is increasingly used and significant efforts are being made to optimize media and culture conditions. Phospholipase A2 (PLA2) are lipolytic enzymes that hydrolyze glycerophospholipids to produce free fatty acids and lysophospholipids that have been found to be critical for many biological processes. Mouse group X secreted PLA2 (mGX) is abundant in the male reproductive tract and its use during sperm capacitation has been shown to improve in vitro production of viable embryos in a mouse model. Here, we examined its effect in the bovine species, testing the impact of mGX on the three steps involved in vitro production of preimplantation embryos: oocyte maturation, fertilization and preimplantation development. We found that incubating cumulus oocyte complexes (COC) or gametes with mGX resulted in increased blastocyst hatching and blastocyst production, respectively. The increases of embryo production induced by the phospholipase mGX were not observed for the catalytically inactive mutant H48Q-mGX, suggesting that these effects require the enzymatic activity of mGX. We also tested bGIB, a bovine homolog of mGX. bGIB failed to improve blastocyst production, underlining the high specificity of mGX. In conclusion, the results presented show that the effects of mGX are not restricted to the mouse model and that it is potent in the bovine species as well. This result strengthens the potential of mGX as a "pro-fertility drug" for mammalian reproduction.


Asunto(s)
Blastocisto/citología , Bovinos/embriología , Técnicas de Cultivo de Embriones/veterinaria , Fosfolipasas A2 Grupo X/farmacología , Animales , Desarrollo Embrionario/efectos de los fármacos , Femenino , Fertilización/efectos de los fármacos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Masculino , Ratones , Oocitos , Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos
5.
Reproduction ; 156(6): 463-476, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30422808

RESUMEN

For artificial insemination (AI) to be successful, it is essential that sperm delivery be perfectly timed relative to ovulation, as sperm lifespan is limited due to oxidative metabolism induced by capacitation. Extending the window of sperm capacitation could therefore increase sperm lifespan, prolong sperm-fertilizing competence and increase AI efficiency. Hyperpolarization of sperm is a crucial step in capacitation and is induced by activation of the potassium calcium-activated channel subfamily U member 1 (KCNU1, also named Slo3 or KSper). Given the essential role played by KCNU1 in capacitation, this study assessed the impact of its pharmacological inhibition on sperm lifespan. We showed that treatment of murine sperm with sub-micromolar concentrations of clofilium, a specific inhibitor of KCNU1, slowed down capacitation, decreased the rate of acrosome reaction and extended the fertilizing competence of capacitated sperm for 12 h. Clofilium also extended fertilizing competence and motility of bovine-capacitated sperm, and increased the rate of fertilization with sperm capacitated for 24 h by 100%, and the rate of blastocyst formation by 150%. Finally, toxicity experiments showed clofilium to have no impact on sperm DNA and no embryotoxicity at the concentration used to extend sperm lifespan. Our results demonstrate that clofilium prolongs fertilizing competence of aging capacitated sperm in vitro in both rodent and bovine species. To our knowledge, this is the first time the duration of sperm-fertilizing competence is shown to be extended by potassium channels blockers.


Asunto(s)
Fertilización/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Compuestos de Amonio Cuaternario/farmacología , Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Bovinos , Masculino , Ratones , Motilidad Espermática/efectos de los fármacos , Espermatozoides/fisiología
6.
EMBO Mol Med ; 10(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29661911

RESUMEN

The genetic causes of oocyte meiotic deficiency (OMD), a form of primary infertility characterised by the production of immature oocytes, remain largely unexplored. Using whole exome sequencing, we found that 26% of a cohort of 23 subjects with OMD harboured the same homozygous nonsense pathogenic mutation in PATL2, a gene encoding a putative RNA-binding protein. Using Patl2 knockout mice, we confirmed that PATL2 deficiency disturbs oocyte maturation, since oocytes and zygotes exhibit morphological and developmental defects, respectively. PATL2's amphibian orthologue is involved in the regulation of oocyte mRNA as a partner of CPEB However, Patl2's expression profile throughout oocyte development in mice, alongside colocalisation experiments with Cpeb1, Msy2 and Ddx6 (three oocyte RNA regulators) suggest an original role for Patl2 in mammals. Accordingly, transcriptomic analysis of oocytes from WT and Patl2-/- animals demonstrated that in the absence of Patl2, expression levels of a select number of highly relevant genes involved in oocyte maturation and early embryonic development are deregulated. In conclusion, PATL2 is a novel actor of mammalian oocyte maturation whose invalidation causes OMD in humans.


Asunto(s)
Codón sin Sentido , Secuenciación del Exoma/métodos , Perfilación de la Expresión Génica/métodos , Infertilidad/genética , Proteínas Nucleares/fisiología , Oocitos/metabolismo , Proteínas de Unión al ARN/fisiología , Adulto , Animales , Estudios de Cohortes , Femenino , Humanos , Meiosis/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Nucleares/genética , Oocitos/citología , Proteínas de Unión al ARN/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...