Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Compr Rev Food Sci Food Saf ; 23(3): e13352, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38634188

RESUMEN

A-type proanthocyanidins (PAs) are a subgroup of PAs that differ from B-type PAs by the presence of an ether bond between two consecutive constitutive units. This additional C-O-C bond gives them a more stable and hydrophobic character. They are of increasing interest due to their potential multiple nutritional effects with low toxicity in food processing and supplement development. They have been identified in several plants. However, the role of A-type PAs, especially their complex polymeric form (degree of polymerization and linkage), has not been specifically discussed and explored. Therefore, recent advances in the physicochemical and structural changes of A-type PAs and their functional properties during extraction, processing, and storing are evaluated. In addition, discussions on the sources, structures, bioactivities, potential applications in the food industry, and future research trends of their derivatives are highlighted. Litchis, cranberries, avocados, and persimmons are all favorable plant sources. Α-type PAs contribute directly or indirectly to human nutrition via the regulation of different degrees of polymerization and bonding types. Thermal processing could have a negative impact on the amount and structure of A-type PAs in the food matrix. More attention should be focused on nonthermal technologies that could better preserve their architecture and structure. The diversity and complexity of these compounds, as well as the difficulty in isolating and purifying natural A-type PAs, remain obstacles to their further applications. A-type PAs have received widespread acceptance and attention in the food industry but have not yet achieved their maximum potential for the future of food. Further research and development are therefore needed.


Asunto(s)
Proantocianidinas , Humanos , Proantocianidinas/análisis , Proantocianidinas/química , Frutas/química , Polimerizacion , Plantas , Estado Nutricional
2.
Front Plant Sci ; 15: 1339536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38328704

RESUMEN

Drought is a persistent challenge for horticulture, affecting various aspects of fruit development and ultimately fruit quality, but the effect on nutritional value has been under-investigated. Here, fruit quality was studied on six tomato genotypes and one goji cultivar under deficit irrigation (DI), from fruit composition to in vitro bioaccessibility of carotenoids. For both species, DI concentrated most health-related metabolites in fresh fruit. On a dry mass basis, DI increased total phenolic and sugar concentration, but had a negative or insignificant impact on fruit ascorbic acid, organic acid, and alcohol-insoluble matter contents. DI also reduced total carotenoids content in tomato (-18.7% on average), especially ß-carotene (-32%), but not in goji berry DW (+15.5% and +19.6%, respectively). DI reduced the overall in vitro bioaccessibility of carotenoids to varying degrees depending on the compound and plant species. Consequently, mixed micelles produced by digestion of fruits subjected to DI contained either the same or lesser quantities of carotenoids, even though fresh fruits could contain similar or higher quantities. Thus, DI effects on fruit composition were species and genotype dependent, but an increase in the metabolite concentration did not necessarily translate into greater bioaccessibility potentially due to interactions with the fruit matrix.

3.
Crit Rev Food Sci Nutr ; : 1-39, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37584238

RESUMEN

Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.


The Leaf proanthocyanidins (LPAs) are mostly oligomeric procyanidins, with a small proportion of leaves containing A-type procyanidins.Foliage is a sustainable source of PAs.LPAs are a potential source of valuable bioactive compounds.The content, structure, extraction and identification and bio-activity of LPAs are discussed.Processing improvement is beneficial to enhance the production of LPA.

4.
Carbohydr Polym ; 281: 119086, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074113

RESUMEN

During processing of plant-based foods, cell wall polysaccharides and polyphenols, such as procyanidins, interact extensively, thereby affecting their physicochemical properties along with their potential health effects. Although hemicelluloses are second only to pectins in affinity for procyanidins in cell walls, a detailed study of their interactions lacks. We investigated the interactions between representative xylose-containing water-soluble hemicelluloses and procyanidins. Turbidity, ITC and DLS were used to determine the relative affinities, and theoretical calculations further ascertained the interactions mechanisms. Xyloglucan and xylan exhibited respectively the strongest and weakest interactions with procyanidins. The different arabinoxylans interacted with procyanidins in a similar strength, intermediate between xyloglucans and xylans. Therefore, the strength of the interaction depended on the structure itself rather than on some incidental properties, e.g., viscosity and molar mass. The arabinose side-chain of arabinoxylan did not inhibit interactions. The computational investigation corroborated the experimental results in that the region of interaction between xyloglucan and procyanidins was significantly wider than that of other hemicelluloses.


Asunto(s)
Proantocianidinas , Pared Celular/química , Pectinas/química , Polisacáridos/química , Proantocianidinas/química , Xilanos/química , Xilosa/análisis
5.
Compr Rev Food Sci Food Saf ; 20(5): 4841-4880, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34288366

RESUMEN

Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.


Asunto(s)
Cacao , Polifenoles , Antioxidantes , Manipulación de Alimentos , Humanos ,
6.
Carbohydr Polym ; 262: 117935, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33838812

RESUMEN

The contribution of ATR-FTIR spectroscopy to study cell wall polysaccharides (CWPs) was carefully investigated. The region 1800-800 cm-1 was exploited using principal component analysis and hierarchical clustering on a large range of different powders of CWPs based on their precise chemical characterization. Relevant wavenumbers were highlighted for each CWP: 1035 cm-1 was attributed to xylose-containing hemicelluloses, 1065 and 807 cm-1 to mannose-containing hemicelluloses, 988 cm-1 to cellulose, 1740 and 1600 cm-1 to homogalacturonans according to the degree of methylation. Some band positions were affected by macromolecular arrangements (especially hemicellulose-cellulose interactions). However, as arabinan and galactan did not reveal distinctive absorption bands, ATR-FTIR spectroscopy did not allow the discrimination of cell walls differing by the abundance of these polysaccharides, e.g., those extracted from apple and beet. Therefore, the application of ATR-FTIR could remain sometimes limited due to the complexity of overlapping spectra bands and vibrational coupling from the large diversity of CWP chemical bonds.


Asunto(s)
Pared Celular/química , Plantas/química , Polisacáridos/química , Celulosa/química , Galactanos/química , Monosacáridos/química , Pectinas/química , Análisis de Componente Principal/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos
7.
Food Chem ; 339: 128096, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979713

RESUMEN

The changes of texture and cell wall characteristics of apricot were investigated in ten clones at two maturity stages. Fruit firmness, cell wall composition and enzyme activity of three apricot flesh zones were analysed. The AIS (alcohol-insoluble solids) were characterised by high amounts of uronic acid (179-300 mg g-1 AIS) and relatively high amounts of cellulosic glucose (118-214 mg g-1 AIS). The methylesterification degree varied significantly among the different clones ranging from 58 to 97 in Ab 5 and Mans 15 respectively. Conversely to zones firmness, enzymatic activity was higher in pistil followed by equatorial and peduncle zones. The ripening effect has been observed in firmness evolution according to enzymatic activity. This correlation allowed a classification of clones depending on softening. Among studied clones, Ab 5, Marouch 16, Mans 15 and Cg 2 were less influenced by softening and have the advantage of a technological valorisation for the processing industry.


Asunto(s)
Pared Celular/química , Frutas/citología , Prunus armeniaca/química , Prunus armeniaca/citología , Azúcares/análisis , Hidrolasas de Éster Carboxílico/metabolismo , Frutas/química , Humanos , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Prunus armeniaca/crecimiento & desarrollo , Azúcares/química , beta-Galactosidasa/metabolismo
8.
Compr Rev Food Sci Food Saf ; 19(6): 3574-3617, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33337054

RESUMEN

Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.


Asunto(s)
Pared Celular/química , Polifenoles/química , Polisacáridos/química , Fibras de la Dieta , Manipulación de Alimentos , Estructura Molecular , Células Vegetales/química
9.
Food Funct ; 11(10): 9144-9156, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33026020

RESUMEN

An early mechanism for the health benefits of dietary plant phenols is their antioxidant activity in the upper digestive tract. Indeed, these non-essential micronutrients abundant in fruits and vegetables can efficiently fight the iron-induced peroxidation of dietary lipids in the gastric compartment, a recognized form of postprandial oxidative stress. In this work, this phenomenon is investigated through a simple model based on nano-emulsions of trilinoleylglycerol, which permits a direct spectroscopic monitoring and mechanistic insights sustained by extensive kinetic analysis. Polyphenols belonging to the main dietary classes are tested, in particular, flavonols, anthocyanins, flavanols and oligomeric procyanidins. Overall, the common polyphenols tested are good inhibitors of lipid peroxidation induced by metmyoglobin (heme iron) in the early stage of digestion (pH 5-6). For instance, under our peroxidation conditions (2 µM heme, 0.7 mM linoleic acid equivalent, 4.5 mM Brij®35), IC50 concentrations in the range 0.4-1.9 µM were estimated for the set of polyphenols, with oligomeric procyanidins being less inhibitory than the flavanol monomers. However, the polyphenols are ineffective at lower pH (pH 4) when the hematin cofactor is dissociated from its protein (globin). On the other hand, a moderate protection against lipid peroxidation induced by free iron (e.g., released by the oxidative degradation of hematin) persists. This protocol, which combines simplicity and nutritional relevance, could provide a basis for standard tests aimed at assessing the antioxidant capacity of foods and food additives.


Asunto(s)
Antioxidantes/química , Hierro/química , Fenoles/química , Triglicéridos/química , Antioxidantes/metabolismo , Emulsiones/química , Emulsiones/metabolismo , Mucosa Gástrica/química , Mucosa Gástrica/metabolismo , Humanos , Hierro/metabolismo , Modelos Biológicos , Oxidación-Reducción , Fenoles/metabolismo , Triglicéridos/metabolismo
10.
J Agric Food Chem ; 68(33): 8900-8906, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32706965

RESUMEN

Histochemical staining with 4-dimethylaminocinnamaldehyde (DMACA), light microscopy, and transmission electron microscopy (TEM) were applied to characterize procyanidin localization at ripe and overripe stages in perry pear flesh (cv. 'De Cloche'). Pear flesh contained stone cell clusters surrounded by very large parenchyma cells. DMACA staining showed procyanidins mainly located in parenchyma cells from the fruit mesocarp. Under light microscopy and TEM, procyanidins appeared in the vacuole of parenchyma cells as uniformly stained granules, probably tannosomes. They were differently dispersed in ripe and overripe perry pears, as the granules remained free inside the vacuole in ripe pears and mostly attached to the tonoplast in overripe pears.


Asunto(s)
Biflavonoides/metabolismo , Catequina/metabolismo , Frutas/ultraestructura , Proantocianidinas/metabolismo , Pyrus/metabolismo , Transporte Biológico , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Microscopía Electrónica de Transmisión , Pyrus/química , Pyrus/ultraestructura , Vacuolas/metabolismo , Vacuolas/ultraestructura
11.
Food Funct ; 11(6): 5077-5090, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32463404

RESUMEN

Food matrix interactions with polyphenols can affect their bioavailability and as a consequence may modulate their biological effects. The aim of this study was to determine if the matrix and its processing would modulate the bioavailability and the postprandial nutrigenomic response to a dietary inflammatory stress of apple flavan-3-ol monomers. We carried out an acute randomized controlled study in minipigs challenged with a high fat meal (HFM) supplemented with raw fruit, puree, or apple phenolic extract with matched content of flavan-3-ol monomers. Fasting and postprandial blood samples were collected over 3 h to quantify flavan-3-ol monomers in sera by UPLC-Q-TOF/MS and to isolate peripheral blood mononuclear cells (PBMCs) for assessing the changes in the gene expression profile using a microarray analysis. When compared to the extract-supplemented meal, the peak of the total flavan-3-ol concentration was reduced by half with both raw apple and puree supplements. The apple matrices also affected the gene expression profile as revealed by the Principal Component Analysis of the microarray data from PBMCs which discriminated the supplementation of HFM with the polyphenol extract from those with raw apples or puree. A total of 309 genes were identified as differentially expressed by the apple-derived products compared to HFM, with 63% modulated only in the presence of the food matrix (apple and puree). The number of differentially modulated genes was higher with the puree (246) than with the unprocessed apple (182). Pathway enrichment analyses revealed that genes affected by the apple-derived products control inflammation and leukocyte transendothelial migration both involved in the onset of atherosclerotic processes. Overall, this study showed that the two apple matrices reduce the postprandial serum concentration of flavon-3-ols whereas they increase the nutrigenomic response of PBMCs. The biological processes identified as modulated by the apple products suggest an attenuation of the transient pro-inflammatory response induced by a HFM. The differences observed between the nutrigenomic responses support that the apple matrix and its processing affect the nutrigenomic response, probably by increasing the bioavailability of other apple phytochemicals. To conclude, this study raises awareness for considering the impact of the food matrix and its processing on the biological response of polyphenols in nutritional studies.


Asunto(s)
Flavonoides/metabolismo , Malus , Polifenoles/metabolismo , Animales , Disponibilidad Biológica , Dieta Alta en Grasa , Masculino , Nutrigenómica , Periodo Posprandial , Distribución Aleatoria , Porcinos
13.
Carbohydr Polym ; 230: 115644, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887907

RESUMEN

Given the high prevalence of arabinan side chains in pectic polysaccharides, this work aims to unveil the impact of their structural diversity on pectic polysaccharides-polyphenol interactions. To assess the effect of arabinan branching degree, sugar beet arabinans (branched and debranched) were used and compared to the well-known structure of apple arabinan and other pectic polysaccharides. Furthermore, arabinans contribution to pectic polysaccharides/polyphenol interactions was assessed. The interactions were evaluated using chlorogenic acid, phloridzin and procyanidins (degree of polymerization of 9). Linear arabinans had 8-fold and 2-fold higher retention for chlorogenic acid and phloridzin, respectively, than branched arabinans. This trend was also observed for the interaction of arabinans with procyanidins. However, arabinans with covalently linked polyphenols showed lower interactions. The interactions involved between arabinans and polyphenols explained 1-28 % of the interactions of pectic polysaccharides, allowing us to conclude that the whole polysaccharide structure is more relevant for polyphenol interactions than each part.

14.
Front Microbiol ; 10: 1319, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258520

RESUMEN

Edaphic cyanobacteria and algae have been extensively studied in dryland soils because they play key roles in the formation of biological soil crusts and the stabilization of soil surfaces. Yet, in temperate agricultural crop soils, little is understood about the functional significance of indigenous photosynthetic microbial communities for various soil processes. This study investigated how indigenous soil algae and cyanobacteria affected topsoil aggregate stability in cereal cropping systems. Topsoil aggregates from conventional and organic cropping systems were incubated in microcosms under dark or photoperiodic conditions with or without a treatment with an herbicide (isoproturon). Physicochemical parameters (bound exopolysaccharides, organic carbon) and microbial parameters (esterase activity, chlorophyll a biomass, and pigment profiles) were measured for incubated aggregates. Aggregate stability were analyzed on the basis of aggregate size distribution and the mean weight diameter (MWD) index, resulting from disaggregation tests. Soil photosynthetic microbial biomass (chl a) was strongly and positively correlated with aggregate stability indicators. The development of microalgae crusts in photoperiodic conditions induced a strong increase of the largest aggregates (>2 mm), as compared to dark conditions (up to 10.6 fold and 27.1 fold, in soil from organic and conventional cropping systems, respectively). Concomitantly, the MWD significantly increased by 2.4 fold and 4.2 fold, for soil from organic and conventional cropping systems. Soil microalgae may have operated directly via biochemical mechanisms, by producing exopolymeric matrices surrounding soil aggregates (bound exopolysaccharides: 0.39-0.45 µg C g-1 soil), and via biophysical mechanisms, where filamentous living microbiota enmeshed soil aggregates. In addition, they may have acted indirectly by stimulating heterotrophic microbial communities, as revealed by the positive effect of microalgal growth on total microbial activity. The herbicide treatment negatively impacted soil microalgal community, resulting in significant decreases of the MWD of the conventional soil aggregates (up to -42% of the value in light treatment). This study underscores that indigenous edaphic algae and cyanobacteria can promote aggregate formation, by forming photosynthetic microbiotic crusts, thus improving the structural stability of topsoil, in temperate croplands. However, the herbicide uses can impair the functional abilities of algal and cyanobacterial communities in agricultural soils. ORIGINALITY/SIGNIFICANCE: Edaphic algal and cyanobacterial communities are known to form photosynthetic microbial crusts in arid soils, where they drive key ecosystem functions. Although less well characterized, such communities are also transiently abundant in temperate and mesic cropped soils. This microcosm study investigated the communities' functional significance in topsoil aggregate formation and stabilization in two temperate cropping systems. Overall, our results showed that the development of indigenous microalgal communities under our experimental conditions drove higher structural stability in topsoil aggregates in temperate cropland soils. Also, herbicide use affected photosynthetic microbial communities and consequently impaired soil aggregation.

15.
Food Chem ; 296: 142-149, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31202298

RESUMEN

Little data are available on the impact of pomace pre-treatment, notably drying, on the nature and yield of polyphenols. Pomace from two apple varieties ('Avrolles' and 'Kermerrien'), pressed with and without oxidation, were air-dried to different degrees. Drying led to the loss of native molecules, notably 5-O-caffeoylquinic acid and flavan-3-ols. Total polyphenol yields, after sequential pressurized liquid extraction (water 10 MPa, 70 °C, then ethanol 48%, 10 MPa, 70 °C), varied between 5 and 15 g/kg dry weight but showed no marked trend with drying. Extracts from dried pomace contained few native polyphenols. Water extracts from 'Kermerrien' contained flavonols, flavanols and phloridzin and those from 'Avrolles' contained phloridzin. Water:ethanol extracts were rich in procyanidins, especially from 'Avrolles', where they represented >80% of analysable polyphenols. Presence of polyphenol molecules with modified structures in the extracts of dried pomaces might lead to different biological properties than those with native molecules.


Asunto(s)
Desecación/métodos , Malus/química , Extractos Vegetales/química , Polifenoles/química , Flavanonas/química , Malus/metabolismo , Polifenoles/aislamiento & purificación , Polisacáridos/química , Proantocianidinas/química
16.
Food Chem ; 294: 9-18, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31126510

RESUMEN

Hot water is an easily implementable process for polyphenols extraction. To evaluate the effect of this process on apple pomace, the overall polyphenolic composition was assessed before and after hot water extraction, followed by extractions with aqueous/organic solutions. As determined by UHPLC-DAD, flavan-3-ols were the main apple native polyphenols. Their amount decreased 50% after hot water extraction, while the other classes remained unchanged. Dihydrochalcones and hydroxycinnamic acid oxidation products, were also observed, alongside with non-extractable oxidised procyanidins that represented more than 4-fold the amount of native apple polyphenols in the pomace. Microwave superheated-water extraction of the insoluble cell wall material in water/acetone solutions and the high amounts of polyphenols that were insoluble in water/ethanol solutions suggested that oxidised procyanidins could be covalently linked to polysaccharides. These complexes represented up to 40% of the available polyphenols from apple pomace, potentially relevant for agro-food waste valuation.


Asunto(s)
Malus/química , Polifenoles/química , Cromatografía Líquida de Alta Presión , Malus/metabolismo , Microondas , Extractos Vegetales/química , Polifenoles/aislamiento & purificación , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray , Agua/química
17.
Nutrients ; 11(3)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893845

RESUMEN

B-type oligomeric procyanidins in apples constitute an important source of polyphenols in the human diet. Their role in health is not known, although it is suggested that they generate beneficial bioactive compounds upon metabolization by the gut microbiota. During apple processing, procyanidins interact with cell-wall polysaccharides and form stable complexes. These interactions need to be taken into consideration in order to better assess the biological effects of fruit constituents. Our objectives were to evaluate the impact of these interactions on the microbial metabolization of cell walls and procyanidins, and to investigate the potential anti-inflammatory activity of the resulting metabolome, in addition to analyzing the taxonomical changes which the microbiota undergo. In vitro fermentation of three model apple matrices with microbiota from 4 healthy donors showed that the binding of procyanidins to cell-wall polysaccharides, whether covalently or non-covalently, substantially reduced procyanidin degradation. Although cell wall-unbound procyanidins negatively affected carbohydrate fermentation, they generated more hydroxyphenylvaleric acid than bound procyanidins, and increased the abundance of Adlercreutzia and Gordonibacter genera. The best results in terms of production of anti-inflammatory bioactive metabolites were observed from the apple matrix with no bonds between procyanidins and cell wall polysaccharides, although the matrix with non-covalent bonds was not far behind.


Asunto(s)
Antiinflamatorios/farmacología , Bacterias/efectos de los fármacos , Frutas/química , Microbioma Gastrointestinal/efectos de los fármacos , Malus/química , Proantocianidinas/metabolismo , Antiinflamatorios/química , Bacterias/metabolismo , Pared Celular , Fermentación , Humanos , Proantocianidinas/química
18.
Carbohydr Polym ; 212: 186-196, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30832846

RESUMEN

Infrared spectroscopy coupled with multivariate analyses such as linear regressions was applied to assess the main cell wall components of a huge diversity of fruits and vegetables belonging to 29 plant species. The methodology was tested on the raw freeze-dried powders and on their corresponding AIS (Alcohol Insoluble Solids) dried by solvent exchanges. The most informative spectral region was 1750-1035 cm-1. Excellent predictions (determination coefficient R2 ≥ 0.9 and residual predictive deviation RPD ≥ 3.0) were obtained for AIS yields and for arabinose, total glucose, non-cellulosic glucose, total neutral sugars, methanol and starch contents in the AIS samples. The key wavenumbers were: 1740 cm-1 for total neutral sugars; 1075, 1440-1450, 1616 and 1740 cm-1 for pectins; 895, 1035-1041 and 1160-1163 cm-1 for cellulose and 1035-1041 cm-1 for lignin. Limitations of the reference methods to analyze cell wall components (biochemical assays, spectrophotometry, chromatography) affecting the prediction accuracy were also discussed.


Asunto(s)
Pared Celular/química , Frutas/química , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Verduras/química , Extractos Vegetales/aislamiento & purificación
19.
Food Chem ; 275: 754-762, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30724259

RESUMEN

Procyanidins and cell walls were extracted from pear at ripe and overripe stages in order to investigate the impact of ripening stage on their association. Procyanidin composition and structure remained stable at the overripe stage. Mid Infrared Spectroscopy (MIR) discriminated cell wall-procyanidin complex from initial purified cell wall material (CWM). Interactions between procyanidins and CWM isolated from the whole flesh (FL), parenchyma cells (PC), stone cells (ST) and skin (SK) at ripe and overripe stage were characterized using UV-Vis spectrometry using Langmuir isotherm formulation and Isothermal Titration Microcalorimetry (ITC). The affinity between procyanidins and CWM decreased as follows: PC > FL > ST > SK. The proportion of bound procyanidins increased at the overripe stage for all CWM and the maximal saturation level was obtained for overripe FL and ST. ITC indicated that associations between pear cell walls and procyanidins involved hydrogen bonds and mainly hydrophobic interactions for overripe PC.


Asunto(s)
Biflavonoides/química , Catequina/química , Pared Celular/química , Proantocianidinas/química , Pyrus/química , Biflavonoides/aislamiento & purificación , Calorimetría , Catequina/aislamiento & purificación , Pared Celular/metabolismo , Precipitación Química , Cromatografía en Gel , Frutas/química , Frutas/metabolismo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Proantocianidinas/aislamiento & purificación , Pyrus/metabolismo , Espectrofotometría Infrarroja
20.
Food Chem ; 240: 615-625, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28946320

RESUMEN

Apricot polyphenols and carotenoids were monitored after industrial and domestic cooking, and after 2months of storage for industrial processing. The main apricot polyphenols were flavan-3-ols, flavan-3-ol monomers and oligomers, with an average degree of polymerization between 4.7 and 10.7 and caffeoylquinic acids. Flavonols and anthocyanins were minor phenolic compounds. Upon processing procyanidins were retained in apricot tissue. Hydroxycinnamic acids, flavan-3-ol monomers, flavonols and anthocyanins leached in the syrup. Flavonol concentrations on per-can basis were significantly increased after processing. Industrial processing effects were higher than domestic cooking probably due to higher temperature and longer duration. After 2months of storage, among polyphenols only hydroxycinnamic acids, flavan-3-ol monomers and anthocyanins were reduced. Whichever the processing method, no significant reductions of total carotenoids were observed after processing. The cis-ß-carotene isomer was significantly increased after processing but with a lower extent in domestic cooking. Significant decreased in total carotenoid compounds occurred during storage.


Asunto(s)
Prunus armeniaca , Carotenoides , Flavonoides , Polifenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...