Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587202

RESUMEN

Teleost fish represent one of the largest and most diverse clades of vertebrates, which makes them great models in various research areas such as ecology and evolution. Recent sequencing endeavors provided high-quality genomes for species covering the main fish evolutionary lineages, opening up large-scale comparative genomics studies. However, transcriptomic data across fish species and organs are heterogenous and have not been integrated with newly sequenced genomes making gene expression quantification and comparative analyses particularly challenging. Thus, resources integrating genomic and transcriptomic data across fish species and organs are still lacking. Here, we present FEVER, a web-based resource allowing evolutionary transcriptomics across species and tissues. First, based on query genes FEVER reconstructs gene trees providing orthologous and paralogous relationships as well as their evolutionary dynamics across 13 species covering the major fish lineages, and 4 model species as evolutionary outgroups. Second, it provides unbiased gene expression across 11 tissues using up-to-date fish genomes. Finally, genomic and transcriptomic data are combined together allowing the exploration of gene expression evolution following speciation and duplication events. FEVER is freely accessible at https://fever.sk8.inrae.fr/.

2.
Sci Rep ; 13(1): 9967, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339990

RESUMEN

Xenopus egg extract is a powerful material to modify cultured cells fate and to induce cellular reprogramming in mammals. In this study, the response of goldfish fin cells to in vitro exposure to Xenopus egg extract, and subsequent culture, was studied using a cDNA microarray approach, gene ontology and KEGG pathways analyses, and qPCR validation. We observed that several actors of the TGFß and Wnt/ß-catenin signaling pathways, as well as some mesenchymal markers, were inhibited in treated cells, while several epithelial markers were upregulated. This was associated with morphological changes of the cells in culture, suggesting that egg extract drove cultured fin cells towards a mesenchymal-epithelial transition. This indicates that Xenopus egg extract treatment relieved some barriers of somatic reprogramming in fish cells. However, the lack of re-expression of pou2 and nanog pluripotency markers, the absence of DNA methylation remodeling of their promoter region, and the strong decrease in de novo lipid biosynthesis metabolism, indicate that reprogramming was only partial. The observed changes may render these treated cells more suitable for studies on in vivo reprogramming after somatic cell nuclear transfer.


Asunto(s)
Reprogramación Celular , Factor de Crecimiento Transformador beta , Animales , Xenopus laevis/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Transición Epitelial-Mesenquimal/genética , Mamíferos
3.
BMC Genomics ; 23(1): 9, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983401

RESUMEN

BACKGROUND: Sexual maturation causes loss of fish muscle mass and deterioration of fillet quality attributes that prevent market success. We recently showed that fillet yield and flesh quality recover in female trout after spawning. To gain insight into the molecular mechanisms regulating flesh quality recovery, we used an Agilent-based microarray platform to conduct a large-scale time course analysis of gene expression in female trout white muscle from spawning to 33 weeks post-spawning. RESULTS: In sharp contrast to the situation at spawning, muscle transcriptome of female trout at 33 weeks after spawning was highly similar to that of female trout of the same cohort that did not spawn, which is consistent with the post-spawning flesh quality recovery. Large-scale time course analysis of gene expression in trout muscle during flesh quality recovery following spawning led to the identification of approximately 3340 unique differentially expressed genes that segregated into four major clusters with distinct temporal expression profiles and functional categories. The first cluster contained approximately 1350 genes with high expression at spawning and downregulation after spawning and was enriched with genes linked to mitochondrial ATP synthesis, fatty acid catabolism and proteolysis. A second cluster of approximately 540 genes with transient upregulation 2 to 8 weeks after spawning was enriched with genes involved in transcription, RNA processing, translation, ribosome biogenesis and protein folding. A third cluster containing approximately 300 genes upregulated 4 to 13 weeks after spawning was enriched with genes encoding ribosomal subunits or regulating protein folding. Finally, a fourth cluster that contained approximately 940 genes with upregulation 8 to 24 weeks after spawning, was dominated by genes encoding myofibrillar proteins and extracellular matrix components and genes involved in glycolysis. CONCLUSION: Overall, our study indicates that white muscle tissue restoration and flesh quality recovery after spawning are associated with transcriptional changes promoting anaerobic ATP production, muscle fibre hypertrophic growth and extracellular matrix remodelling. The generation of the first database of genes associated with post-spawning muscle recovery may provide insights into the molecular and cellular mechanisms controlling muscle yield and fillet quality in fish and provide a useful list of potential genetic markers for these traits.


Asunto(s)
Oncorhynchus mykiss , Animales , Femenino , Perfilación de la Expresión Génica , Humanos , Análisis por Micromatrices , Músculos , Oncorhynchus mykiss/genética , Transcriptoma
4.
Genomics ; 113(6): 3811-3826, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34508856

RESUMEN

The aim of this study was to investigate the respective contribution of maternally-inherited mRNAs and proteins to egg molecular cargo and to its developmental competence in fish using pikeperch as a model. Our study provides novel insights into the understanding of type-specific roles of maternally-inherited molecules in fish. Here we show, for the first time, that transcripts and proteins have distinct, yet complementary, functions in the egg of teleost fish. Maternally-inherited mRNAs would shape embryo neurodevelopment, while maternally-inherited proteins would rather be responsible for protecting the embryo against pathogens. Additionally, we observed that processes directly preceding ovulation may considerably affect the reproductive success by modifying expression level of genes crucial for proper embryonic development, being novel fish egg quality markers (e.g., smarca4 or h3f3a). These results are of major importance for understanding the influence of external factors on reproductive fitness in both captive and wild-type fish species.


Asunto(s)
Desarrollo Embrionario , Reproducción , Animales , Desarrollo Embrionario/genética , Femenino , Sistema Inmunológico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Mol Reprod Dev ; 87(9): 934-951, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32864792

RESUMEN

Pikeperch, Sander lucioperca, is a species of high interest to the aquaculture. The expansion of its production can only be achieved by furthering domestication level. However, the mechanisms driving the domestication process in finfishes are poorly understood. Transcriptome profiling of eggs was found to be a useful tool allowing understanding of the domestication process in teleosts. In this study, using next-generation sequencing, the first pikeperch transcriptome has been generated as well as pikeperch-specific microarray comprising 35,343 unique probes. Next, we performed transcriptome profiling of eggs obtained from wild and domesticated populations. We found 710 differentially expressed genes that were linked mostly to nervous system development. These results provide new insights into processes that are directly involved in the domestication of finfishes. It can be suggested that all the identified processes were predetermined by the maternally derived set of genes contained in the unfertilized eggs. This allows us to suggest that fish behavior, along with many other processes, can be predetermined at the cellular level and may have significant implications on the adaptation of cultured fish to the natural environment. This also allows to suggest that fish behavior should be considered as a very important pikeperch aquaculture selection trait.


Asunto(s)
Domesticación , Neurogénesis/genética , Óvulo/metabolismo , Percas , Animales , Acuicultura , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo/genética , Masculino , Óvulo/crecimiento & desarrollo , Percas/embriología , Percas/genética , Percas/crecimiento & desarrollo , Transcriptoma/genética
6.
BMC Genomics ; 20(1): 584, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307377

RESUMEN

BACKGROUND: Egg quality can be defined as the egg ability to be fertilized and subsequently develop into a normal embryo. Previous research has shed light on factors that can influence egg quality. Large gaps however remain including a comprehensive view of what makes a bad egg. Initial development of the embryo relies on maternally-inherited molecules, such as transcripts, deposited in the egg during its formation. Bad egg quality is therefore susceptible to be associated with alteration or dysregulation of maternally-inherited transcripts. We performed transcriptome analysis on a large number (N = 136) of zebrafish egg clutches, each clutch being split to monitor developmental success and perform transcriptome analysis in parallel. We aimed at drawing a molecular portrait of the egg in order to characterize the relation between egg transcriptome and developmental success and to subsequently identify new candidate genes involved in fertility. RESULTS: We identified 66 transcript that were differentially abundant in eggs of contrasted phenotype (low or high developmental success). Statistical modeling using partial least squares regression and genetics algorithm demonstrated that gene signatures from transcriptomic data can be used to predict developmental success. The identity and function of differentially expressed genes indicate a major dysregulation of genes of the translational machinery in poor quality eggs. Two genes, otulina and slc29a1a, predominantly expressed in the ovary and dysregulated in poor quality eggs were further investigated using CRISPR/Cas9 mediated genome editing. Mutants of each gene revealed remarkable subfertility whereby the majority of their eggs were unfertilizable. The Wnt pathway appeared to be dysregulated in the otulina mutant-derived eggs. CONCLUSIONS: Here we show that egg transcriptome contains molecular signatures, which can be used to predict developmental success. Our results also indicate that poor egg quality in zebrafish is associated with a dysregulation of (i) the translational machinery genes and (ii) novel fertility genes, otulina and slc29a1a, playing an important role for fertilization. Together, our observations highlight the diversity of the possible causes of egg quality defects and reveal mechanisms of maternal origin behind the lack of fertilization and early embryonic failures that can occur under normal reproduction conditions.


Asunto(s)
Fertilidad/genética , Regulación de la Expresión Génica , Óvulo/metabolismo , Biosíntesis de Proteínas , Animales , Femenino , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma , Vía de Señalización Wnt , Pez Cebra
7.
PLoS Biol ; 17(4): e3000185, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947255

RESUMEN

Dmrt1 is a highly conserved transcription factor, which is critically involved in regulation of gonad development of vertebrates. In medaka, a duplicate of dmrt1-acting as master sex-determining gene-has a tightly timely and spatially controlled gonadal expression pattern. In addition to transcriptional regulation, a sequence motif in the 3' UTR (D3U-box) mediates transcript stability of dmrt1 mRNAs from medaka and other vertebrates. We show here that in medaka, two RNA-binding proteins with antagonizing properties target this D3U-box, promoting either RNA stabilization in germ cells or degradation in the soma. The D3U-box is also conserved in other germ-cell transcripts, making them responsive to the same RNA binding proteins. The evolutionary conservation of the D3U-box motif within dmrt1 genes of metazoans-together with preserved expression patterns of the targeting RNA binding proteins in subsets of germ cells-suggest that this new mechanism for controlling RNA stability is not restricted to fishes but might also apply to other vertebrates.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Oryzias/genética , Procesos de Determinación del Sexo/genética , Regiones no Traducidas 3'/genética , Animales , Evolución Biológica , Femenino , Proteínas de Peces/genética , Células Germinativas/metabolismo , Masculino , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/metabolismo
8.
PeerJ ; 7: e6338, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723624

RESUMEN

Fish are sensitive to temperature, but the intergenerational consequences of maternal exposure to high temperature on offspring behavioural plasticity and underlying mechanisms are unknown. Here we show that a thermal maternal stress induces impaired emotional and cognitive responses in offspring rainbow trout (Oncorhynchus mykiss). Thermal stress in mothers triggered the inhibition of locomotor fear-related responses upon exposure to a novel environment and decreased spatial learning abilities in progeny. Impaired behavioural phenotypes were associated with the dysregulation of several genes known to play major roles in neurodevelopment, including auts2 (autism susceptibility candidate 2), a key gene for neurodevelopment, more specifically neuronal migration and neurite extension, and critical for the acquisition of neurocognitive function. In addition, our analysis revealed the dysregulation of another neurodevelopment gene (dpysl5) as well as genes associated with human cognitive disorders (arv1, plp2). We observed major differences in maternal mRNA abundance in the eggs following maternal exposure to high temperature indicating that some of the observed intergenerational effects are mediated by maternally-inherited mRNAs accumulated in the egg. Together, our observations shed new light on the intergenerational determinism of fish behaviour and associated underlying mechanisms. They also stress the importance of maternal history on fish behavioural plasticity.

9.
PLoS One ; 14(12): e0226878, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31891603

RESUMEN

Domestication is an evolutionary process during which we expect populations to progressively adapt to an environment controlled by humans. It is accompanied by genetic and presumably epigenetic changes potentially leading to modifications in the transcriptomic profile in various tissues. Reproduction is a key function often affected by this process in numerous species, regardless of the mechanism. The maternal mRNA in fish eggs is crucial for the proper embryogenesis. Our working hypothesis is that modifications of maternal mRNAs may reflect potential genetic and/or epigenetic modifications occurring during domestication and could have consequences during embryogenesis. Consequently, we investigated the trancriptomic profile of unfertilized eggs from two populations of Eurasian perch. These two populations differed by their domestication histories (F1 vs. F7+-at least seven generations of reproduction in captivity) and were genetically differentiated (FST = 0.1055, p<0.05). A broad follow up of the oogenesis progression failed to show significant differences during oogenesis between populations. However, the F1 population spawned earlier with embryos presenting an overall higher survivorship than those from the F7+ population. The transcriptomic profile of unfertilized eggs showed 358 differentially expressed genes between populations. In conclusion, our data suggests that the domestication process may influence the regulation of the maternal transcripts in fish eggs, which could in turn explain differences of developmental success.


Asunto(s)
Domesticación , Óvulo/metabolismo , Percas/embriología , Percas/genética , ARN Mensajero Almacenado/genética , Transcriptoma/genética , Animales , Desarrollo Embrionario/genética
10.
BMC Genomics ; 19(1): 865, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30509177

RESUMEN

BACKGROUND: The dramatic increase in myotomal muscle mass in post-hatching fish is related to their ability to lastingly produce new muscle fibres, a process termed hyperplasia. The molecular and cellular mechanisms underlying fish muscle hyperplasia largely remain unknown. In this study, we aimed to characterize intrinsic properties of myogenic cells originating from hyperplasic fish muscle. For this purpose, we compared in situ proliferation, in vitro cell behavior and transcriptomic profile of myogenic precursors originating from hyperplasic muscle of juvenile trout (JT) and from non-hyperplasic muscle of fasted juvenile trout (FJT) and adult trout (AT). RESULTS: For the first time, we showed that myogenic precursors proliferate in hyperplasic muscle from JT as shown by in vivo BrdU labeling. This proliferative rate was very low in AT and FJT muscle. Transcriptiomic analysis revealed that myogenic cells from FJT and AT displayed close expression profiles with only 64 differentially expressed genes (BH corrected p-val < 0.001). In contrast, 2623 differentially expressed genes were found between myogenic cells from JT and from both FJT and AT. Functional categories related to translation, mitochondrial activity, cell cycle, and myogenic differentiation were inferred from genes up regulated in JT compared to AT and FJT myogenic cells. Conversely, Notch signaling pathway, that signs cell quiescence, was inferred from genes down regulated in JT compared to FJT and AT. In line with our transcriptomic data, in vitro JT myogenic precursors displayed higher proliferation and differentiation capacities than FJT and AT myogenic precursors. CONCLUSIONS: The transcriptomic analysis and examination of cell behavior converge to support the view that myogenic cells extracted from hyperplastic muscle of juvenile trout are intrinsically more potent to form myofibres than myogenic cells extracted from non-hyperplasic muscle. The generation of gene expression profiles in myogenic cell extracted from muscle of juvenile trout may yield insights into the molecular and cellular mechanisms controlling hyperplasia and provides a useful list of potential molecular markers of hyperplasia.


Asunto(s)
Músculos/metabolismo , Oncorhynchus mykiss/metabolismo , Células Madre/metabolismo , Transcriptoma , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Análisis por Conglomerados , Perfilación de la Expresión Génica , Hiperplasia , Mitocondrias/metabolismo , Desarrollo de Músculos/genética , Músculos/citología , Músculos/patología , Miogenina/genética , Miogenina/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crecimiento & desarrollo , Células Madre/citología
11.
PLoS Genet ; 14(9): e1007593, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30199527

RESUMEN

Female gamete production relies on coordinated molecular and cellular processes that occur in the ovary throughout oogenesis. In fish, as in other vertebrates, these processes have been extensively studied both in terms of endocrine/paracrine regulation and protein expression and activity. The role of small non-coding RNAs in the regulation of animal reproduction remains however largely unknown and poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in male and female gonads in several vertebrate species. We studied its expression in the medaka ovary and generated a mutant line (using CRISPR/Cas9 genome editing) to determine its importance for reproductive success with special interest for egg production. Our results show that miR-202-5p is the most abundant mature form of the miRNA and that it is expressed in granulosa cells and in the unfertilized egg. The knock out (KO) of mir-202 gene resulted in a strong phenotype both in terms of number and quality of eggs produced. Mutant females exhibited either no egg production or produced a dramatically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. We quantified the size distribution of the oocytes in the ovary of KO females and performed a large-scale transcriptomic analysis approach to identified dysregulated molecular pathways. Together, cellular and molecular analyses indicate that the lack of miR-202 impairs the early steps of oogenesis/folliculogenesis and decreases the number of large (i.e. vitellogenic) follicles, ultimately leading to dramatically reduced female fecundity. This study sheds new light on the regulatory mechanisms that control the early steps of follicular development, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction.


Asunto(s)
Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/fisiología , Oogénesis/genética , Oryzias/fisiología , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Femenino , Edición Génica , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Células de la Granulosa , Masculino , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Ovario/citología , Ovario/crecimiento & desarrollo , Ovario/metabolismo
12.
J Exp Biol ; 220(Pt 16): 2932-2938, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28576820

RESUMEN

In fish, data on microRNAs (miRNAs) involved in myogenesis are scarce. In order to identify miRNAs involved in satellite cell differentiation, we used a methionine depletion/replenishment protocol to synchronize myogenic cell differentiation. Our results validated that methionine removal (72 h) from the medium strongly decreased myoD1 and myogenin expression, indicating differentiation arrest. In contrast, methionine replenishment rescued expression of myoD1 and myogenin, showing a resumption of differentiation. We performed a miRNA array analysis of myogenic cells under three conditions: presence of methionine for 72 h (control), absence of methionine for 72 h (Meth-) and absence of methionine for 48 h followed by 24 h of methionine replenishment (Meth-/+). A clustering analysis identified three clusters: cluster I corresponds to miRNA upregulated only in Meth-/+ conditions; cluster II corresponds to miRNA downregulated only in Meth-/+ conditions; cluster III corresponds to miRNAs with high expression in control, low expression in Meth- conditions and intermediate expression after methionine replenishment (Meth-/+). Cluster III was very interesting because it fitted with the data obtained for myoD1 and myogenin (supporting an involvement in differentiation) and contained seven miRNAs with muscle-related function (e.g. miR-133a) and one (miR-210) with unknown function. Based on our previously published miRNA repertoire ( Juanchich et al., 2016), we confirmed miR-133a was expressed only in white muscle and showed that miR-210 had strong expression in white muscle. We also showed that miR-210 expression was upregulated during differentiation of satellite cells, suggesting that miR-210 was potentially involved in the differentiation of satellite cells.


Asunto(s)
Diferenciación Celular , Metionina/deficiencia , Desarrollo de Músculos , Células Satélite del Músculo Esquelético/fisiología , Trucha/fisiología , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trucha/genética
13.
BMC Genomics ; 18(1): 447, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592307

RESUMEN

BACKGROUND: Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. RESULTS: The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. CONCLUSION: Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia, occurs in trout after refeeding. The generation of a large set of genes up-regulated in muscle of refed trout may yield insights into the molecular and cellular mechanisms controlling skeletal muscle mass in teleost and serve as a useful list of potential molecular markers of muscle growth in fish.


Asunto(s)
Ayuno/metabolismo , Perfilación de la Expresión Génica , Hipertrofia/genética , Células Musculares/metabolismo , Células Musculares/patología , Regulación hacia Arriba , Animales , Desarrollo de Músculos/genética , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crecimiento & desarrollo
14.
BMC Genomics ; 18(1): 347, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28472935

RESUMEN

BACKGROUND: Excessive accumulation of adipose tissue in cultured fish is an outstanding problem in aquaculture. To understand the development of adiposity, it is crucial to identify the genes which expression is associated with adipogenic differentiation. Therefore, the transcriptomic profile at different time points (days 3, 8, 15 and 21) along primary culture development of rainbow trout preadipocytes has been investigated using an Agilent trout oligo microarray. RESULTS: Our analysis identified 4026 genes differentially expressed (fold-change >3) that were divided into two major clusters corresponding to the main phases observed during the preadipocyte culture: proliferation and differentiation. Proliferation cluster comprised 1028 genes up-regulated from days 3 to 8 of culture meanwhile the differentiation cluster was characterized by 2140 induced genes from days 15 to 21. Proliferation was characterized by enrichment in genes involved in basic cellular and metabolic processes (transcription, ribosome biogenesis, translation and protein folding), cellular remodelling and autophagy. In addition, the implication of the eicosanoid signalling pathway was highlighted during this phase. On the other hand, the terminal differentiation phase was enriched with genes involved in energy production, lipid and carbohydrate metabolism. Moreover, during this phase an enrichment in genes involved in the formation of the lipid droplets was evidenced as well as the activation of the thyroid-receptor/retinoic X receptor (TR/RXR) and the peroxisome proliferator activated receptors (PPARs) signalling pathways. The whole adipogenic process was driven by a coordinated activation of transcription factors and epigenetic modulators. CONCLUSIONS: Overall, our study demonstrates the coordinated expression of functionally related genes during proliferation and differentiation of rainbow trout adipocyte cells. Furthermore, the information generated will allow future investigations of specific genes involved in particular stages of fish adipogenesis.


Asunto(s)
Adipocitos/fisiología , Adipogénesis , Transcriptoma , Animales , Proliferación Celular , Células Cultivadas , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Mar Biotechnol (NY) ; 19(1): 102-115, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28181038

RESUMEN

Variable and low egg quality is a major limiting factor for the development of efficient aquaculture production. This stems from limited knowledge on the mechanisms underlying egg quality in cultured fish. Molecular analyses, such as transcriptomic studies, are valuable tools to identify the most important processes modulating egg quality. However, very few studies have been devoted to this aspect so far. Within this study, the microarray-based transcriptomic analysis of eggs (of different quality) of sea bass (Dicentrarchus labrax) was performed. An Agilent oligo microarray experiment was performed on labelled mRNA extracted from 16 batches of eggs (each batch obtained from a different female) of sea bass, in which over 24,000 published probe arrays were used. We identified 39 differentially expressed genes exhibiting a differential expression between the groups of low (fertilization rate < 60 %) and high (fertilization rate > 60 %) quality. The mRNA levels of eight genes were further analyzed by quantitative PCR. Seven genes were confirmed by qPCR to be differentially expressed in eggs of low and high quality. This study confirmed the importance of some of the genes already reported to be potential molecular quality indicators (mainly rnf213 and irf7), but we also found new genes (mainly usp5, mem-prot, plec, cenpf), which had not yet been reported to be quality-dependent in fish. These results suggest the importance of genes involved in several important processes, such as protein ubiquitination, translation, DNA repair, and cell structure and architecture; these probably being the mechanisms that contribute to egg developmental competence in sea bass.


Asunto(s)
Lubina/genética , Proteínas de Peces/genética , Aptitud Genética , Procesamiento Proteico-Postraduccional , Transcriptoma , Cigoto/fisiología , Animales , Acuicultura , Lubina/crecimiento & desarrollo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Femenino , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Masculino , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Biosíntesis de Proteínas , Ubiquitinación
16.
Sci Rep ; 7: 40241, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28071684

RESUMEN

MicroRNAs (miRNAs) are small, highly conserved non-coding RNAs that play important roles in the regulation of many physiological processes. However, the role of miRNAs in vertebrate oocyte formation (i.e., oogenesis) remains poorly investigated. To gain new insights into the roles of miRNAs in oogenesis, we searched for ovarian-predominant miRNAs. Using a microarray displaying 3,800 distinct miRNAs originating from different vertebrate species, we identified 66 miRNAs that are expressed predominantly in the ovary. Of the miRNAs exhibiting the highest overabundance in the ovary, 20 were selected for further analysis. Using a combination of QPCR and in silico analyses, we identified 8 novel miRNAs that are predominantly expressed in the ovary, including 2 miRNAs (miR-4785 and miR-6352) that exhibit strict ovarian expression. Of these 8 miRNAs, 7 were previously uncharacterized in fish. The strict ovarian expression of miR-4785 and miR-6352 suggests an important role in oogenesis and/or early development, possibly involving a maternal effect. Together, these results indicate that, similar to protein-coding genes, a significant number of ovarian-predominant miRNA genes are found in fish.


Asunto(s)
MicroARNs/genética , Oogénesis , Ovario/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Análisis por Micromatrices , Oryzias/genética , Oryzias/metabolismo
17.
BMC Genomics ; 17(1): 810, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27756225

RESUMEN

BACKGROUND: Muscle fibre hyperplasia stops in most fish when they reach approximately 50 % of their maximum body length. However, new small-diameter muscle fibres can be produced de novo in aged fish after muscle injury. Given that virtually nothing is known regarding the transcriptional mechanisms that regulate regenerative myogenesis in adult fish, we explored the temporal changes in gene expression during trout muscle regeneration following mechanical crushing. Then, we compared the gene transcription profiles of regenerating muscle with the previously reported gene expression signature associated with muscle fibre hyperplasia. RESULTS: Using an Agilent-based microarray platform we conducted a time-course analysis of transcript expression in 29 month-old trout muscle before injury (time 0) and at the site of injury 1, 8, 16 and 30 days after lesions were made. We identified more than 7000 unique differentially expressed transcripts that segregated into four major clusters with distinct temporal profiles and functional categories. Functional categories related to response to wounding, response to oxidative stress, inflammatory processes and angiogenesis were inferred from the early up-regulated genes, while functions related to cell proliferation, extracellular matrix remodelling, muscle development and myofibrillogenesis were inferred from genes up-regulated 30 days post-lesion, when new small myofibres were visible at the site of injury. Remarkably, a large set of genes previously reported to be up-regulated in hyperplastic muscle growth areas was also found to be overexpressed at 30 days post-lesion, indicating that many features of the transcriptional program underlying muscle hyperplasia are reactivated when new myofibres are transiently produced during fish muscle regeneration. CONCLUSION: The results of the present study demonstrate a coordinated expression of functionally related genes during muscle regeneration in fish. Furthermore, this study generated a useful list of novel genes associated with muscle regeneration that will allow further investigations on the genes, pathways or biological processes involved in muscle growth and regeneration in vertebrates.


Asunto(s)
Perfilación de la Expresión Génica , Desarrollo de Músculos/genética , Oncorhynchus mykiss/fisiología , Regeneración/genética , Transcriptoma , Animales , Análisis por Conglomerados , Regulación de la Expresión Génica , Hiperplasia , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Factores de Tiempo
18.
Artículo en Inglés | MEDLINE | ID: mdl-27442111

RESUMEN

Global transcriptome analysis of chicken whole blood to discover biomarkers of different phenotypes or physiological disorders has never been investigated so far. Whole blood provides significant advantages, allowing large scale and non-invasive sampling. However, generation of gene expression data from the blood of non-mammalian species remains a challenge, notably due to the nucleated red blood cells, hindering the use of well-established protocols. The aim of this study was to analyze the relevance of using whole blood cells (WB) to find biomarkers, instead of Peripheral Blood Mononuclear Cells (PBMC), usually chosen for immune challenges. RNA sources from WB and PBMC was characterized by microarray analysis. Our results show that the quality and quantity of RNA obtained from WB was suitable for further analyses, although the quality was lower than that from PBMC. The transcriptome profiling comparison revealed that the majority of genes were expressed in both WB and PBMC. Hemoglobin subunits were the major transcripts in WB, whereas the most enriched biological process was related to protein catabolic process. Most of the over-represented transcripts in PBMC were implicated in functions specific to thrombocytes, like coagulation and platelet activation, probably due to the large proportion of this nucleated cell type in chicken PBMC. Functions related to B and T cells and to other immune functions were also enriched in the PBMC subset. We conclude that WB is more suitable for large scale immunity oriented studies and other biological processes that have been poorly investigated so far.


Asunto(s)
Biomarcadores/sangre , Proteínas Sanguíneas/genética , Pollos/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucocitos Mononucleares/metabolismo , Transcriptoma/genética , Animales , Células Cultivadas , Pollos/crecimiento & desarrollo , Biología Computacional , Genoma/genética , Masculino , Anotación de Secuencia Molecular , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
BMC Genomics ; 17: 449, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27296167

RESUMEN

BACKGROUND: The achievement of sustainable feeding practices in aquaculture by reducing the reliance on wild-captured fish, via replacement of fish-based feed with plant-based feed, is impeded by the poor growth response seen in fish fed high levels of plant ingredients. Our recent strategy to nutritionally program rainbow trout by early short-term exposure to a plant-based (V) diet versus a control fish-based (M) diet at the first-feeding fry stage when the trout fry start to consume exogenous feed, resulted in remarkable improvements in feed intake, growth and feed utilization when the same fish were challenged with the diet V (V-challenge) at the juvenile stage, several months following initial exposure. We employed microarray expression analysis at the first-feeding and juvenile stages to deduce the mechanisms associated with the nutritional programming of plant-based feed acceptance in trout. RESULTS: Transcriptomic analysis was performed on rainbow trout whole fry after 3 weeks exposure to either diet V or diet M at the first feeding stage (3-week), and in the whole brain and liver of juvenile trout after a 25 day V-challenge, using a rainbow trout custom oligonucleotide microarray. Overall, 1787 (3-week + Brain) and 924 (3-week + Liver) mRNA probes were affected by the early-feeding exposure. Gene ontology and pathway analysis of the corresponding genes revealed that nutritional programming affects pathways of sensory perception, synaptic transmission, cognitive processes and neuroendocrine peptides in the brain; whereas in the liver, pathways mediating intermediary metabolism, xenobiotic metabolism, proteolysis, and cytoskeletal regulation of cell cycle are affected. These results suggest that the nutritionally programmed enhanced acceptance of a plant-based feed in rainbow trout is driven by probable acquisition of flavour and feed preferences, and reduced sensitivity to changes in hepatic metabolic and stress pathways. CONCLUSIONS: This study outlines the molecular mechanisms in trout brain and liver that accompany the nutritional programming of plant-based diet acceptance in trout, reinforces the notion of the first-feeding stage in oviparous fish as a critical window for nutritional programming, and provides support for utilizing this strategy to achieve improvements in sustainability of feeding practices in aquaculture.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Oncorhynchus mykiss/fisiología , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Estudios de Asociación Genética , Especificidad de Órganos/genética , Reproducibilidad de los Resultados , Transcriptoma
20.
PLoS One ; 10(10): e0139938, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26439495

RESUMEN

Fish gills represent a complex organ composed of several cell types that perform multiple physiological functions. Among these cells, ionocytes are implicated in the maintenance of ion homeostasis. However, because the ionocyte represents only a small percent of whole gill tissue, its specific transcriptome can be overlooked among the numerous cell types included in the gill. The objective of this study is to better understand ionocyte functions by comparing the RNA expression of this cell type in freshwater and seawater acclimated rainbow trout. To realize this objective, ionocytes were captured from gill cryosections using laser capture microdissection after immunohistochemistry. Then, transcriptome analyses were performed on an Agilent trout oligonucleotide microarray. Gene expression analysis identified 108 unique annotated genes differentially expressed between freshwater and seawater ionocytes, with a fold change higher than 3. Most of these genes were up-regulated in freshwater cells. Interestingly, several genes implicated in ion transport, extracellular matrix and structural cellular proteins appeared up-regulated in freshwater ionocytes. Among them, several ion transporters, such as CIC2, SLC26A6, and NBC, were validated by qPCR and/or in situ hybridization. The latter technique allowed us to localize the transcripts of these ion transporters in only ionocytes and more particularly in the freshwater cells. Genes involved in metabolism and also several genes implicated in transcriptional regulation, cell signaling and the cell cycle were also enhanced in freshwater ionocytes. In conclusion, laser capture microdissection combined with microarray analysis allowed for the determination of the transcriptional signature of scarce cells in fish gills, such as ionocytes, and aided characterization of the transcriptome of these cells in freshwater and seawater acclimated trout.


Asunto(s)
Branquias/metabolismo , Transporte Iónico/fisiología , Transcriptoma , Trucha/genética , Animales , Agua Dulce , Perfilación de la Expresión Génica , Branquias/citología , Captura por Microdisección con Láser , Análisis de Secuencia por Matrices de Oligonucleótidos , Agua de Mar , Análisis de Matrices Tisulares , Trucha/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...