Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Radioact ; 137: 142-149, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25078471

RESUMEN

The aim of this work was to study the near-field dispersion of (85)Kr around the nuclear fuel reprocessing plant at La Hague (AREVA NC La Hague - France) under stable meteorological conditions. Twenty-two (85)Kr night-time experimental campaigns were carried out at distances of up to 4 km from the release source. Although the operational Gaussian models predict for these meteorological conditions a distance to plume touchdown of several kilometers, we almost systematically observed a marked ground signal at distances of 0.5-4 km. The calculated atmospheric transfer coefficients (ATC) show values (1) higher than those observed under neutral conditions, (2) much higher than those proposed by the operational models, and (3) higher than those used in the impact assessments.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Radioisótopos de Criptón/análisis , Monitoreo de Radiación , Francia , Modelos Teóricos , Radiometría , Tiempo (Meteorología)
2.
J Environ Radioact ; 101(11): 937-44, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20638159

RESUMEN

Atmospheric releases of krypton-85, from the nuclear fuel reprocessing plant at the AREVA NC facility at La Hague (France), were used to test Gaussian models of dispersion. In 2001-2002, the French Institute for Radiological Protection and Nuclear Safety (IRSN) studied the atmospheric dispersion of 15 releases, using krypton-85 as a tracer for plumes emitted from two 100-m-high stacks. Krypton-85 is a chemically inert radionuclide. Krypton-85 air concentration measurements were performed on the ground in the downwind direction, at distances between 0.36 and 3.3 km from the release, by neutral or slightly unstable atmospheric conditions. The standard deviation for the horizontal dispersion of the plume and the Atmospheric Transfer Coefficient (ATC) were determined from these measurements. The experimental results were compared with calculations using first generation (Doury, Briggs) and second generation (ADMS 4.0) Gaussian models. The ADMS 4.0 model was used in two configurations; one takes account of the effect of the built-up area, and the other the effect of the roughness of the surface on the plume dispersion. Only the Briggs model correctly reproduced the measured values for the width of the plume, whereas the ADMS 4.0 model overestimated it and the Doury model underestimated it. The agreement of the models with measured values of the ATC varied according to distance from the release point. For distances less than 2 km from the release point, the ADMS 4.0 model achieved the best agreement between model and measurement; beyond this distance, the best agreement was achieved by the Briggs and Doury models.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Atmósfera/química , Radioisótopos de Criptón/análisis , Monitoreo de Radiación , Movimientos del Aire , Geografía , Distribución Normal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA