Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroendocrinology ; 113(12): 1248-1261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36257292

RESUMEN

INTRODUCTION: Hippocampal newborn neurons integrate into functional circuits where they play an important role in learning and memory. We previously showed that perinatal exposure to Aroclor 1254, a commercial mixture of polychlorinated biphenyls (PCBs) associated with alterations of cognitive function in children, disrupted the normal maturation of excitatory synapses in the dentate gyrus. We hypothesized that hippocampal immature neurons underlie some of the cognitive effects of PCBs. METHODS: We used newly generated neurons to examine the effects of PCBs in mice following maternal exposure. Newborn dentate granule cells were tagged with enhanced green fluorescent protein using a transgenic mouse line. The transcriptome of the newly generated granule cells was assessed using RNA sequencing. RESULTS: Gestational and lactational exposure to 6 mg/kg/day of Aroclor 1254 disrupted the mRNA expression of 1,308 genes in newborn granule cells. Genes involved in mitochondrial functions were highly enriched with 154 genes significantly increased in exposed compared to control mice. The upregulation of genes involved in oxidative phosphorylation was accompanied by signs of endoplasmic reticulum stress and an increase in lipid peroxidation, a marker of oxidative stress, in the subgranular zone of the dentate gyrus but not in mature granule cells in the granular zone. Aroclor 1254 exposure also disrupted the expression of synaptic genes. Using laser-captured subgranular and granular zones, this effect was restricted to the subgranular zone, where newborn neurons are located. CONCLUSION: Our data suggest that gene expression in newborn granule cells is disrupted by Aroclor 1254 and provide clues to the effects of endocrine-disrupting chemicals on the brain.


Asunto(s)
Bifenilos Policlorados , Humanos , Femenino , Embarazo , Niño , Ratones , Animales , Bifenilos Policlorados/farmacología , Hipocampo , Neuronas/fisiología , Ratones Transgénicos , Encéfalo , Estrés Oxidativo , Expresión Génica , Giro Dentado , Neurogénesis
2.
Elife ; 112022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36416409

RESUMEN

Cav3.2 T-type calcium channel is a major molecular actor of neuropathic pain in peripheral sensory neurons, but its involvement at the supraspinal level is almost unknown. In the anterior pretectum (APT), a hub of connectivity of the somatosensory system involved in pain perception, we show that Cav3.2 channels are expressed in a subpopulation of GABAergic neurons coexpressing parvalbumin (PV). In these PV-expressing neurons, Cav3.2 channels contribute to a high-frequency-bursting activity, which is increased in the spared nerve injury model of neuropathy. Specific deletion of Cav3.2 channels in APT neurons reduced both the initiation and maintenance of mechanical and cold allodynia. These data are a direct demonstration that centrally expressed Cav3.2 channels also play a fundamental role in pain pathophysiology.


Asunto(s)
Canales de Calcio Tipo T , Neuralgia , Área Pretectal , Canales de Calcio Tipo T/genética , Parvalbúminas , Células Receptoras Sensoriales , Animales
3.
Elife ; 102021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34766906

RESUMEN

Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (KATP) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types. We also demonstrate the ability of cortical neurons to take-up and metabolize lactate. We further reveal that ATP is produced by cortical neurons largely via oxidative phosphorylation and only modestly by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to glucose as an energy substrate, and that lactate metabolism shapes neuronal activity in the neocortex through KATP channels. Our results highlight the importance of metabolic crosstalk between neurons and astrocytes for brain function.


Asunto(s)
Ácido Láctico/metabolismo , Neuronas/metabolismo , Adenosina Trifosfato , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Glucólisis , Canales KATP , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Fosforilación Oxidativa , Ratas Wistar
4.
J Vis Exp ; (136)2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29985318

RESUMEN

The cerebral cortex is composed of numerous cell types exhibiting various morphological, physiological, and molecular features. This diversity hampers easy identification and characterization of these cell types, prerequisites to study their specific functions. This article describes the multiplex single cell reverse transcription polymerase chain reaction (RT-PCR) protocol, which allows, after patch-clamp recording in slices, to detect simultaneously the expression of tens of genes in a single cell. This simple method can be implemented with morphological characterization and is widely applicable to determine the phenotypic traits of various cell types and their particular cellular environment, such as in the vicinity of blood vessels. The principle of this protocol is to record a cell with the patch-clamp technique, to harvest and reverse transcribe its cytoplasmic content, and to detect qualitatively the expression of a predefined set of genes by multiplex PCR. It requires a careful design of PCR primers and intracellular patch-clamp solution compatible with RT-PCR. To ensure a selective and reliable transcript detection, this technique also requires appropriate controls from cytoplasm harvesting to amplification steps. Although precautions discussed here must be strictly followed, virtually any electrophysiological laboratory can use the multiplex single cell RT-PCR technique.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex/métodos , Técnicas de Placa-Clamp/métodos , Transcripción Reversa/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...