Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 81: 101903, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369012

RESUMEN

Acetyl and other acyl groups from different short-chain fatty acids (SCFA) competitively modify histones at various lysine sites. To fully understand the functional significance of such histone acylation, a key epigenetic mechanism, it is crucial to characterize the cellular sources of the corresponding acyl-CoA molecules required for the lysine modification. Like acetate, SCFAs such as propionate, butyrate and crotonate are thought to be the substrates used to generate the corresponding acyl-CoAs by enzymes known as acyl-CoA synthetases. The acetyl-CoA synthetase, ACSS2, which produces acetyl-CoA from acetate in the nucleocytoplasmic compartment, has been proposed to also mediate the synthesis of acyl-CoAs such as butyryl- and crotonyl-CoA from the corresponding SCFAs. This idea is now widely accepted and is sparking new research projects. However, based on our direct in vitro experiments with purified or recombinant enzymes and structural considerations, we demonstrate that ACSS2 is unable to mediate the generation of non-acetyl acyl-CoAs like butyryl- and crotonyl-CoA. It is therefore essential to re-examine published data and corresponding discussions in the light of this new finding.


Asunto(s)
Acilcoenzima A , Lisina , Acetilcoenzima A , Acilcoenzima A/metabolismo , Acetatos , Histonas
2.
Methods Protoc ; 7(1)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38392689

RESUMEN

The connection between imbalances in the human gut microbiota, known as dysbiosis, and various diseases has been well established. Current techniques for sampling the small intestine are both invasive for patients and costly for healthcare facilities. Most studies on human gut microbiome are conducted using faecal samples, which do not accurately represent the microbiome in the upper intestinal tract. A pilot clinical investigation, registered as NCT05477069 and sponsored by the Grenoble Alpes University Hospital, is currently underway to evaluate a novel ingestible medical device (MD) designed for collecting small intestinal liquids by Pelican Health. This study is interventional and monocentric, involving 15 healthy volunteers. The primary objective of the study is to establish the safety and the performance of the MD when used on healthy volunteers. Secondary objectives include assessing the device's performance and demonstrating the difference between the retrieved sample from the MD and the corresponding faecal sample. Multi-omics analysis will be performed, including metagenomics, metabolomics, and culturomics. We anticipate that the MD will prove to be safe without any reported adverse effects, and we collected samples suitable for the proposed omics analyses in order to demonstrate the functionality of the MD and the clinical potential of the intestinal content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA