Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982420

RESUMEN

The gastrointestinal tract constitutes a large interface with the inner body and is a crucial barrier against gut microbiota and other pathogens. As soon as this barrier is damaged, pathogen-associated molecular patterns (PAMPs) are recognized by immune system receptors, including toll-like receptors (TLRs). Glucagon-like peptide 1 (GLP-1) is an incretin that was originally involved in glucose metabolism and recently shown to be rapidly and strongly induced by luminal lipopolysaccharides (LPS) through TLR4 activation. In order to investigate whether the activation of TLRs other than TLR4 also increases GLP-1 secretion, we used a polymicrobial infection model through cecal ligation puncture (CLP) in wild-type and TLR4-deficient mice. TLR pathways were assessed by intraperitoneal injection of specific TLR agonists in mice. Our results show that CLP induces GLP-1 secretion both in wild-type and TLR4-deficient mice. CLP and TLR agonists increase gut and systemic inflammation. Thus, the activation of different TLRs increases GLP-1 secretion. This study highlights for the first time that, in addition to an increased inflammatory status, CLP and TLR agonists also strongly induce total GLP-1 secretion. Microbial-induced GLP-1 secretion is therefore not only a TLR4/LPS-cascade.


Asunto(s)
Lipopolisacáridos , Receptor Toll-Like 4 , Animales , Ratones , Receptor Toll-Like 4/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptores Toll-Like/metabolismo , Adyuvantes Inmunológicos , Ratones Endogámicos C57BL
2.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36362012

RESUMEN

Bacterial lipopolysaccharides (LPS, endotoxins) are found in high amounts in the gut lumen. LPS can cross the gut barrier and pass into the blood (endotoxemia), leading to low-grade inflammation, a common scheme in metabolic diseases. Phospholipid transfer protein (PLTP) can transfer circulating LPS to plasma lipoproteins, thereby promoting its detoxification. However, the impact of PLTP on the metabolic fate and biological effects of gut-derived LPS is unknown. This study aimed to investigate the influence of PLTP on low-grade inflammation, obesity and insulin resistance in relationship with LPS intestinal translocation and metabolic endotoxemia. Wild-type (WT) mice were compared with Pltp-deficient mice (Pltp-KO) after a 4-month high-fat (HF) diet or oral administration of labeled LPS. On a HF diet, Pltp-KO mice showed increased weight gain, adiposity, insulin resistance, lipid abnormalities and inflammation, together with a higher exposure to endotoxemia compared to WT mice. After oral administration of LPS, PLTP deficiency led to increased intestinal translocation and decreased association of LPS to lipoproteins, together with an altered catabolism of triglyceride-rich lipoproteins (TRL). Our results show that PLTP, by modulating the intestinal translocation of LPS and plasma processing of TRL-bound LPS, has a major impact on low-grade inflammation and the onset of diet-induced metabolic disorders.


Asunto(s)
Dieta Alta en Grasa , Endotoxemia , Inflamación , Resistencia a la Insulina , Aumento de Peso , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Lipopolisacáridos/efectos adversos , Lipoproteínas/metabolismo , Obesidad/etiología , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Aumento de Peso/fisiología
3.
Sci Rep ; 11(1): 10824, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031519

RESUMEN

COVID-19 pneumonia has specific features and outcomes that suggests a unique immunopathogenesis. Severe forms of COVID-19 appear to be more frequent in obese patients, but an association with metabolic disorders is not established. Here, we focused on lipoprotein metabolism in patients hospitalized for severe pneumonia, depending on COVID-19 status. Thirty-four non-COVID-19 and 27 COVID-19 patients with severe pneumonia were enrolled. Most of them required intensive care. Plasma lipid levels, lipoprotein metabolism, and clinical and biological (including plasma cytokines) features were assessed. Despite similar initial metabolic comorbidities and respiratory severity, COVID-19 patients displayed a lower acute phase response but higher plasmatic concentrations of non-esterified fatty acids (NEFAs). NEFA profiling was characterised by higher level of polyunsaturated NEFAs (mainly linoleic and arachidonic acids) in COVID-19 patients. Multivariable analysis showed that among severe pneumonia, COVID-19-associated pneumonia was associated with higher NEFAs, lower apolipoprotein E and lower high-density lipoprotein cholesterol concentrations, independently of body mass index, sequential organ failure (SOFA) score, and C-reactive protein levels. NEFAs and PUFAs concentrations were negatively correlated with the number of ventilator-free days. Among hospitalized patients with severe pneumonia, COVID-19 is independently associated with higher NEFAs (mainly linoleic and arachidonic acids) and lower apolipoprotein E and HDL concentrations. These features might act as mediators in COVID-19 pathogenesis and emerge as new therapeutic targets. Further investigations are required to define the role of NEFAs in the pathogenesis and the dysregulated immune response associated with COVID-19.Trial registration: NCT04435223.


Asunto(s)
COVID-19/patología , Ácidos Grasos no Esterificados/sangre , Anciano , Apolipoproteínas E/sangre , Ácidos Araquidónicos/sangre , COVID-19/sangre , COVID-19/virología , HDL-Colesterol/sangre , Citocinas/sangre , Femenino , Humanos , Ácidos Linoleicos/sangre , Masculino , Persona de Mediana Edad , Análisis de Componente Principal , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad
4.
Front Immunol ; 12: 622935, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054798

RESUMEN

Introduction: During peritonitis, lipopolysaccharides (LPS) cross the peritoneum and pass through the liver before reaching the central compartment. The aim of the present study was to investigate the role of lipoproteins and phospholipid transfer protein (PLTP) in the early stages of LPS detoxification. Material and Methods: Peritonitis was induced by intra-peritoneal injection of LPS in mice. We analyzed peritoneal fluid, portal and central blood. Lipoprotein fractions were obtained by ultracentrifugation and fast protein liquid chromatography. LPS concentration and activity were measured by liquid chromatography coupled with mass spectrometry and limulus amoebocyte lysate. Wild-type mice were compared to mice knocked out for PLTP. Results: In mice expressing PLTP, LPS was able to bind to HDL in the peritoneal compartment, and this was maintained in plasma from portal and central blood. A hepatic first-pass effect of HDL-bound LPS was observed in wild-type mice. LPS binding to HDL resulted in an early arrival of inactive LPS in the central blood of wild-type mice. Conclusion: PLTP promotes LPS peritoneal clearance and neutralization in a model of peritonitis. This mechanism involves the early binding of LPS to lipoproteins inside the peritoneal cavity, which promotes LPS translocation through the peritoneum and its uptake by the liver.


Asunto(s)
Líquido Ascítico/metabolismo , Lipopolisacáridos/sangre , Lipoproteínas HDL/sangre , Peritoneo/metabolismo , Peritonitis/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Peritonitis/sangre , Peritonitis/inducido químicamente , Proteínas de Transferencia de Fosfolípidos/sangre , Proteínas de Transferencia de Fosfolípidos/genética , Unión Proteica , Factores de Tiempo
5.
J Lipid Res ; 62: 100013, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33518513

RESUMEN

Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell-membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3's role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approximately 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa
6.
J Lipid Res ; 62: 100011, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33500240

RESUMEN

Bacterial lipopolysaccharides (LPSs or endotoxins) can bind most proteins of the lipid transfer/LPS-binding protein (LT/LBP) family in host organisms. The LPS-bound LT/LBP proteins then trigger either an LPS-induced proinflammatory cascade or LPS binding to lipoproteins that are involved in endotoxin inactivation and detoxification. Cholesteryl ester transfer protein (CETP) is an LT/LBP member, but its impact on LPS metabolism and sepsis outcome is unclear. Here, we performed fluorescent LPS transfer assays to assess the ability of CETP to bind and transfer LPS. The effects of intravenous (iv) infusion of purified LPS or polymicrobial infection (cecal ligation and puncture [CLP]) were compared in transgenic mice expressing human CETP and wild-type mice naturally having no CETP activity. CETP displayed no LPS transfer activity in vitro, but it tended to reduce biliary excretion of LPS in vivo. The CETP expression in mice was associated with significantly lower basal plasma lipid levels and with higher mortality rates in both models of endotoxemia and sepsis. Furthermore, CETPTg plasma modified cytokine production of macrophages in vitro. In conclusion, despite having no direct LPS binding and transfer property, human CETP worsens sepsis outcomes in mice by altering the protective effects of plasma lipoproteins against endotoxemia, inflammation, and infection.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol
7.
Atherosclerosis ; 320: 10-18, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33497863

RESUMEN

BACKGROUND AND AIMS: Apolipoprotein (apo) C1 is a 6.6 kDa protein associated with HDL and VLDL. ApoC1 alters triglyceride clearance, and it also favors cholesterol accumulation in HDL, especially by inhibiting CETP in human plasma. Apart from studies in mice, which lack CETP, the impact of apoC1 on atherosclerosis in animal models expressing CETP, like in humans, is not known. This study aimed at determining the net effect of human apoC1 on atherosclerosis in rabbits, a species with naturally high CETP activity but with endogenous apoC1 without CETP inhibitory potential. METHODS: Rabbits expressing a human apoC1 transgene (HuApoC1Tg) were generated and displayed significant amounts of human apoC1 in plasma. RESULTS: After cholesterol feeding, atherosclerosis lesions were significantly less extensive (-22%, p < 0.05) and HDL displayed a reduced ability to serve as CETP substrates (-25%, p < 0.05) in HuApoC1Tg rabbits than in WT littermates. It was associated with rises in plasma HDL cholesterol level and PON-1 activity, and a decrease in the plasma level of the lipid oxidation markers 12(S)-HODE and 8(S)HETE. In chow-fed animals, the level of HDL-cholesterol was also significantly higher in HuApoC1Tg than in WT animals (0.83 ± 0.11 versus 0.73 ± 0.11 mmol/L, respectively, p < 0.05), and it was associated with significantly lower CETP activity (cholesteryl ester transfer rate, -10%, p < 0.05; specific CETP activity, -14%, p < 0.05). CONCLUSIONS: Constitutive expression of fully functional human apoC1 in transgenic rabbit attenuates atherosclerosis. It was found to relate, at least in part, to the inhibition of plasma CETP activity and to alterations in plasma HDL.


Asunto(s)
Apolipoproteína C-I , Aterosclerosis , Animales , Apolipoproteína C-I/genética , Aterosclerosis/genética , Aterosclerosis/prevención & control , Proteínas de Transferencia de Ésteres de Colesterol/genética , HDL-Colesterol/metabolismo , Técnicas de Transferencia de Gen , Humanos , Ratones , Conejos
8.
J Clin Invest ; 130(11): 5858-5874, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32759503

RESUMEN

Mitochondria have emerged as key actors of innate and adaptive immunity. Mitophagy has a pivotal role in cell homeostasis, but its contribution to macrophage functions and host defense remains to be delineated. Here, we showed that lipopolysaccharide (LPS) in combination with IFN-γ inhibited PINK1-dependent mitophagy in macrophages through a STAT1-dependent activation of the inflammatory caspases 1 and 11. In addition, we demonstrated that the inhibition of mitophagy triggered classical macrophage activation in a mitochondrial ROS-dependent manner. In a murine model of polymicrobial infection (cecal ligature and puncture), adoptive transfer of Pink1-deficient bone marrow or pharmacological inhibition of mitophagy promoted macrophage activation, which favored bactericidal clearance and led to a better survival rate. Reciprocally, mitochondrial uncouplers that promote mitophagy reversed LPS/IFN-γ-mediated activation of macrophages and led to immunoparalysis with impaired bacterial clearance and lowered survival. In critically ill patients, we showed that mitophagy was inhibited in blood monocytes of patients with sepsis as compared with nonseptic patients. Overall, this work demonstrates that the inhibition of mitophagy is a physiological mechanism that contributes to the activation of myeloid cells and improves the outcome of sepsis.


Asunto(s)
Bacterias/inmunología , Activación de Macrófagos , Macrófagos Peritoneales/inmunología , Mitofagia/inmunología , Sepsis/inmunología , Animales , Femenino , Humanos , Interferón gamma/inmunología , Lipopolisacáridos/inmunología , Macrófagos Peritoneales/microbiología , Macrófagos Peritoneales/patología , Masculino , Ratones , Proteínas Quinasas/inmunología , Células RAW 264.7 , Sepsis/microbiología , Sepsis/patología
9.
Front Microbiol ; 10: 1774, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428071

RESUMEN

Lipopolysaccharides (LPS) originate from the outer membrane of Gram-negative bacteria and trigger an inflammatory response via the innate immune system. LPS consist of a lipid A moiety directly responsible for the stimulation of the proinflammatory cascade and a polysaccharide chain of variable length. LPS form aggregates of variable size and structure in aqueous media, and the aggregation/disaggregation propensity of LPS is known as a key determinant of their biological activity. The aim of the present study was to determine to which extent the length of the polysaccharide chain can affect the nature of LPS structures, their pharmacokinetics, and eventually their proinflammatory properties in vivo. LPS variants of Salmonella Minnesota with identical lipid A but with different polysaccharide moieties were used. The physical properties of LPS aggregates were analyzed by zetametry, dynamic light scattering, and microscopy. The stability of LPS aggregates was tested in the presence of plasma, whole blood, and cultured cell lines. LPS pharmacokinetics was performed in wild-type mice. The accumulation in plasma of rough LPS (R-LPS) with a short polysaccharidic chain was lower, and its hepatic uptake was faster as compared to smooth LPS (S-LPS) with a long polysaccharidic chain. The inflammatory response was weaker with R-LPS than with S-LPS. As compared to S-LPS, R-LPS formed larger aggregates, with a higher hydrophobicity index, a more negative zeta potential, and a higher critical aggregation concentration. The lower stability of R-LPS aggregates could be illustrated in vitro by a higher extent of association of LPS to plasma lipoproteins, faster binding to blood cells, and increased uptake by macrophages and hepatocytes, compared to S-LPS. Our data indicate that a long polysaccharide chain is associated with the formation of more stable aggregates with extended residence time in plasma and higher inflammatory potential. These results show that polysaccharide chain length, and overall aggregability of LPS might be helpful to predict the proinflammatory effect that can be expected in experimental settings using LPS preparations. In addition, better knowledge and control of LPS aggregation and disaggregation might lead to new strategies to enhance LPS detoxification in septic patients.

10.
Sci Rep ; 9(1): 9134, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235831

RESUMEN

Obesity may not be consistently associated with metabolic disorders and mortality later in life, prompting exploration of the challenging concept of healthy obesity. Here, the consumption of a high-fat/high-sucrose (HF/HS) diet produces hyperglycaemia and hypercholesterolaemia, increases oxidative stress, increases endotoxaemia, expands adipose tissue (with enlarged adipocytes, enhanced macrophage infiltration and the accumulation of cholesterol and oxysterols), and reduces the median lifespan of obese mice. Despite the persistence of obesity, supplementation with a polyphenol-rich plant extract (PRPE) improves plasma lipid levels and endotoxaemia, prevents macrophage recruitment to adipose tissues, reduces adipose accumulation of cholesterol and cholesterol oxides, and extends the median lifespan. PRPE drives the normalization of the HF/HS-mediated functional enrichment of genes associated with immunity and inflammation (in particular the response to lipopolysaccharides). The long-term limitation of immune cell infiltration in adipose tissue by PRPE increases the lifespan through a mechanism independent of body weight and fat storage and constitutes the hallmark of a healthy adiposity trait.


Asunto(s)
Adiposidad/efectos de los fármacos , Dieta , Longevidad/efectos de los fármacos , Obesidad/patología , Obesidad/fisiopatología , Extractos Vegetales/farmacología , Polifenoles/análisis , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Animales , Regulación hacia Abajo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Extractos Vegetales/química
11.
Atherosclerosis ; 275: 409-418, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29866392

RESUMEN

BACKGROUND AND AIMS: LPCAT3 plays a major role in phospholipid metabolism in the liver and intestine. However, the impact of LPCAT3 on hematopoietic cell and macrophage functions has yet to be described. Our aim was to understand the functions of LPCAT3 in macrophages and to investigate whether LPCAT3 deficiency in hematopoietic cells may affect atherosclerosis development. METHODS: Mice with constitutive Lpcat3 deficiency (Lpcat3-/-) were generated. We used fetal hematopoietic liver cells to generate WT and Lpcat3-/- macrophages in vitro and to perform hematopoietic cell transplantation in recipient Ldlr-/- mice. RESULTS: Lpcat3-deficient macrophages displayed major reductions in the arachidonate content of phosphatidylcholines, phosphatidylethanolamines and, unexpectedly, plasmalogens. These changes were associated with altered cholesterol homeostasis, including an increase in the ratio of free to esterified cholesterol and a reduction in cholesterol efflux in Lpcat3-/- macrophages. This correlated with the inhibition of some LXR-regulated pathways, related to altered cellular availability of the arachidonic acid. Indeed, LPCAT3 deficiency was associated with decreased Abca1, Abcg1 and ApoE mRNA levels in fetal liver cells derived macrophages. In vivo, these changes translated into a significant increase in atherosclerotic lesions in Ldlr-/- mice with hematopoietic LPCAT3 deficiency. CONCLUSIONS: This study identifies LPCAT3 as a key factor in the control of phospholipid homeostasis and arachidonate availability in myeloid cells and underlines a new role for LPCAT3 in plasmalogen metabolism. Moreover, our work strengthens the link between phospholipid and sterol metabolism in hematopoietic cells, with significant consequences on nuclear receptor-regulated pathways and atherosclerosis development.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/deficiencia , Aterosclerosis/enzimología , Colesterol/metabolismo , Células Madre Hematopoyéticas/enzimología , Macrófagos/enzimología , Fosfolípidos/metabolismo , Placa Aterosclerótica , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Ácido Araquidónico/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Células Cultivadas , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Trasplante de Células Madre Hematopoyéticas , Receptores X del Hígado/metabolismo , Macrófagos/trasplante , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Receptores de LDL/deficiencia , Receptores de LDL/genética
12.
Oncotarget ; 9(28): 19688-19703, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29731975

RESUMEN

Plasma phospholipid transfer protein (PLTP) binds and transfers a number of amphipathic compounds, including phospholipids, cholesterol, diacylglycerides, tocopherols and lipopolysaccharides. PLTP functions are relevant for many pathophysiological alterations involved in neurodegenerative disorders (especially lipid metabolism, redox status, and immune reactions), and a significant increase in brain PLTP levels was observed in patients with Alzheimer's disease (AD) compared to controls. To date, it has not been reported whether PLTP can modulate the formation of amyloid plaques, i.e. one of the major histopathological hallmarks of AD. We thus assessed the role of PLTP in the AD context by breeding PLTP-deficient mice with an established model of AD, the J20 mice. A phenotypic characterization of the amyloid pathology was conducted in J20 mice expressing or not PLTP. We showed that PLTP deletion is associated with a significant reduction of cerebral Aß deposits and astrogliosis, which can be explained at least in part by a rise of Aß clearance through an increase in the microglial phagocytic activity and the expression of the Aß-degrading enzyme neprilysin. PLTP arises as a negative determinant of plaque clearance and over the lifespan, elevated PLTP activity could lead to a higher Aß load in the brain.

13.
Front Behav Neurosci ; 12: 310, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618663

RESUMEN

Vitamin E, the most important lipophilic radical scavenging antioxidant in vivo, has a pivotal role in brain. In an earlier study, we observed that adult mice with a defect in the gene encoding plasma phospholipid transfer protein (PLTP) display a moderate reduction in cerebral vitamin E levels, and exacerbated anxiety despite normal locomotion and memory functions. Here we sought to determine whether dietary vitamin E supplementation can modulate neurotransmitter levels and alleviate the increased anxiety phenotype of PLTP-deficient (PLTP -/-) mice. To address this question, a vitamin E-enriched diet was used, and two complementary approches were implemented: (i) "early supplementation": neurotransmitter levels and anxiety were assessed in 6 months old PLTP -/- mice born from vitamin E-supplemented parents; and (ii) "late supplementation": neurotransmitter levels and anxiety were assessed in 6 months old PLTP -/- mice fed a vitamin E-enriched diet from weaning. Our results show for the first time that an inadequate supply of vitamin E during development, due to moderate maternal vitamin E deficiency, is associated with reduced brain vitamin E levels at birth and irreversible alterations in brain glutamate levels. They also suggest this deficiency is associated with increased anxiety at adulthood. Thus, the present study leads to conclude on the importance of the micronutrient vitamin E during pregnancy.

14.
Cell Rep ; 21(5): 1160-1168, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29091756

RESUMEN

Glucagon-like peptide 1 (GLP-1) is a hormone released from enteroendocrine L cells. Although first described as a glucoregulatory incretin hormone, GLP-1 also suppresses inflammation and promotes mucosal integrity. Here, we demonstrate that plasma GLP-1 levels are rapidly increased by lipopolysaccharide (LPS) administration in mice via a Toll-like receptor 4 (TLR4)-dependent mechanism. Experimental manipulation of gut barrier integrity after dextran sodium sulfate treatment, or via ischemia/reperfusion experiments in mice, triggered a rapid rise in circulating GLP-1. This phenomenon was detected prior to measurable changes in inflammatory status and plasma cytokine and LPS levels. In human subjects, LPS administration also induced GLP-1 secretion. Furthermore, GLP-1 levels were rapidly increased following the induction of ischemia in the human intestine. These findings expand traditional concepts of enteroendocrine L cell biology to encompass the sensing of inflammatory stimuli and compromised mucosal integrity, linking glucagon-like peptide secretion to gut inflammation.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Íleon/efectos de los fármacos , Lipopolisacáridos/toxicidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextran/farmacología , Células Enteroendocrinas/citología , Células Enteroendocrinas/efectos de los fármacos , Células Enteroendocrinas/metabolismo , Humanos , Íleon/metabolismo , Interleucina-6/deficiencia , Interleucina-6/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Ácidos Mirísticos/sangre , Proglucagón/metabolismo , Proproteína Convertasa 1/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Adulto Joven
15.
J Lipid Res ; 58(10): 1950-1961, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28765208

RESUMEN

Transmissible spongiform encephalopathies are fatal neurodegenerative diseases with an urgent need for therapeutic and prophylactic strategies. At the time when the blood-mediated transmission of prions was demonstrated, in vitro studies indicated a high binding affinity of the scrapie prion protein (PrPSc) with apoB-containing lipoproteins, i.e., the main carriers of cholesterol in human blood. The aim of the present study was to explore the relationship between circulating cholesterol-containing lipoproteins and the pathogenicity of prions in vivo. We showed that, in mice with a genetically engineered deficiency for the plasma lipid transporter, phospholipid transfer protein (PLTP), abnormally low circulating cholesterol concentrations were associated with a significant prolongation of survival time after intraperitoneal inoculation of the 22L prion strain. Moreover, when circulating cholesterol levels rose after feeding PLTP-deficient mice a lipid-enriched diet, a significant reduction in survival time of mice together with a marked increase in the accumulation rate of PrPSc deposits in their brain were observed. Our results suggest that the circulating cholesterol level is a determinant of prion propagation in vivo and that cholesterol-lowering strategies might be a successful therapeutic approach for patients suffering from prion diseases.


Asunto(s)
Colesterol/sangre , Priones/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos C57BL , Proteínas de Transferencia de Fosfolípidos/deficiencia , Proteínas de Transferencia de Fosfolípidos/genética , Análisis de Supervivencia
16.
Sci Rep ; 7(1): 3053, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596518

RESUMEN

Although plasma phospholipid transfer protein (PLTP) has been mainly studied in the context of atherosclerosis, it shares homology with proteins involved in innate immunity. Here, we produced active recombinant human PLTP (rhPLTP) in the milk of new lines of transgenic rabbits. We successfully used rhPLTP as an exogenous therapeutic protein to treat endotoxemia and sepsis. In mouse models with injections of purified lipopolysaccharides or with polymicrobial infection, we demonstrated that rhPLTP prevented bacterial growth and detoxified LPS. In further support of the antimicrobial effect of PLTP, PLTP-knocked out mice were found to be less able than wild-type mice to fight against sepsis. To our knowledge, the production of rhPLTP to counter infection and to reduce endotoxemia and its harmful consequences is reported here for the first time. This paves the way for a novel strategy to satisfy long-felt, but unmet needs to prevent and treat sepsis.


Asunto(s)
Antiinfecciosos/uso terapéutico , Proteínas de Transferencia de Fosfolípidos/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Antiinfecciosos/farmacología , Ratones , Ratones Endogámicos C57BL , Proteínas de Transferencia de Fosfolípidos/farmacología , Conejos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico
17.
Cell Mol Immunol ; 13(6): 795-804, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26320740

RESUMEN

OBJECTIVE: Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD4+ Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood. Moreover, PLTP deficiency did not modify the amounts of CD4+ and CD8+ T lymphocyte subsets. However, PLTP-deficiency, associated with upregulation of the Th2 phenotype, was accompanied by a significant decrease in the production of the pro-Th1 cytokine interleukin 18 by accessory cells. CONCLUSIONS: For the first time, this work reports a physiological role for PLTP in the polarization of CD4+ T cells toward the pro-inflammatory Th1 phenotype.


Asunto(s)
Inmunidad Adaptativa , Polaridad Celular/inmunología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Biomarcadores/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Citometría de Flujo , Factor de Transcripción GATA3/metabolismo , Hipersensibilidad Tardía/inmunología , Hipersensibilidad Tardía/patología , Recuento de Leucocitos , Ratones Endogámicos C57BL , Proteínas de Transferencia de Fosfolípidos/deficiencia , Bazo/citología , Proteínas de Dominio T Box/metabolismo , Linfocitos T Reguladores/metabolismo
18.
J Lipid Res ; 56(7): 1363-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26023073

RESUMEN

Quantitation of plasma lipopolysaccharides (LPSs) might be used to document Gram-negative bacterial infection. In the present work, LPS-derived 3-hydroxymyristate was extracted from plasma samples with an organic solvent, separated by reversed phase HPLC, and quantitated by MS/MS. This mass assay was combined with the limulus amebocyte lysate (LAL) bioassay to monitor neutralization of LPS activity in biological samples. The described HPLC/MS/MS method is a reliable, practical, accurate, and sensitive tool to quantitate LPS. The combination of the LAL and HPLC/MS/MS analyses provided new evidence for the intrinsic capacity of plasma lipoproteins and phospholipid transfer protein to neutralize the activity of LPS. In a subset of patients with systemic inflammatory response syndrome, with documented infection but with a negative plasma LAL test, significant amounts of LPS were measured by the HPLC/MS/MS method. Patients with the highest plasma LPS concentration were more severely ill. HPLC/MS/MS is a relevant method to quantitate endotoxin in a sample, to assess the efficacy of LPS neutralization, and to evaluate the proinflammatory potential of LPS in vivo.


Asunto(s)
Análisis Químico de la Sangre/métodos , Cangrejos Herradura , Lipopolisacáridos/sangre , Proteínas de la Membrana/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Espectrometría de Masas en Tándem
19.
Am J Pathol ; 183(3): 975-86, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23830874

RESUMEN

Plasma phospholipid transfer protein (PLTP) increases the circulating levels of proatherogenic lipoproteins, accelerates blood coagulation, and modulates inflammation. The role of PLTP in the development of abdominal aortic aneurysm (AAA) was investigated by using either a combination of mechanical and elastase injury at one site of mouse aorta (elastase model) or continuous infusion of angiotensin II in hyperlipidemic ApoE-knockout mice (Ang II model). With the elastase model, complete PLTP deficiency was associated with a significantly lower incidence and a lesser degree of AAA expansion. With the Ang II model, findings were consistent with those in the elastase model, with a lower severity grade in PLTP-deficient mice, an intermediate phenotype in PLTP-deficient heterozygotes, and a blunted effect of the PLTP-deficient trait when restricted to bone marrow-derived immune cells. The protective effect of whole-body PLTP deficiency in AAA was illustrated further by a lesser degree of adventitia expansion, reduced elastin degradation, fewer recruited macrophages, and less smooth muscle cell depletion in PLTP-deficient than in wild-type mice, as evident from comparative microscopic analysis of aorta sections. Finally, cumulative evidence supports the association of PLTP deficiency with reduced expression and activity levels of matrix metalloproteinases, known to degrade elastin and collagen. We conclude that PLTP can play a significant role in the pathophysiology of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Proteínas de Transferencia de Fosfolípidos/deficiencia , Proteínas de Transferencia de Fosfolípidos/metabolismo , Angiotensina II , Animales , Aorta/patología , Aneurisma de la Aorta Abdominal/complicaciones , Apolipoproteínas E/deficiencia , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Elastina/metabolismo , Inflamación/complicaciones , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Elastasa Pancreática
20.
Arterioscler Thromb Vasc Biol ; 31(10): 2232-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21778422

RESUMEN

OBJECTIVE: The goal of this study was to determine the impact of the nuclear receptor constitutive androstane receptor (CAR) on lipoprotein metabolism and atherosclerosis in hyperlipidemic mice. METHODS AND RESULTS: Low-density lipoprotein receptor-deficient (Ldlr(-/-)) and apolipoprotein E-deficient (ApoE(-/-)) mice fed a Western-type diet were treated weekly with the Car agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or the vehicle only for 8 weeks. In Ldlr(-/-) mice, treatment with TCPOBOP induced a decrease in plasma triglyceride and intermediate-density lipoprotein/low-density lipoprotein cholesterol levels (≈30% decrease in both cases after 2 months, P<0.01). These mice also showed a significant reduction in the production of very-low-density lipoproteins associated with a decrease in hepatic triglyceride content and the repression of several genes involved in lipogenesis. TCPOBOP treatment also induced a marked increase in the very-low-density lipoprotein receptor in the liver, which probably contributed to the decrease in intermediate-density lipoprotein/low-density lipoprotein levels. Atherosclerotic lesions in the aortic valves of TCPOBOP-treated Ldlr(-/-) mice were also reduced (-60%, P<0.001). In ApoE(-/-) mice, which lack the physiological apoE ligand for the very-low-density lipoprotein receptor, the effect of TCPOBOP on plasma cholesterol levels and the development of atherosclerotic lesions was markedly attenuated. CONCLUSIONS: CAR is a potential target in the prevention and treatment of hypercholesterolemia and atherosclerosis.


Asunto(s)
Apolipoproteínas B/sangre , Aterosclerosis/prevención & control , Hiperlipidemias/prevención & control , Piridinas/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores de LDL/deficiencia , Secuencia de Aminoácidos , Animales , Apolipoproteína B-100 , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Colesterol/sangre , LDL-Colesterol/sangre , Receptor de Androstano Constitutivo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Genes Reporteros , Células HEK293 , Células Hep G2 , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hiperlipidemias/patología , Lipogénesis/genética , Lipoproteínas/sangre , Lipoproteínas VLDL/sangre , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Elementos de Respuesta , Factores de Tiempo , Transfección , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA