Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Trends Microbiol ; 31(8): 832-844, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031065

RESUMEN

Benefits of fasting and caloric restriction on host metabolic health are well established, but less is known about the effects on the gut microbiome and how this impacts renewal of the intestinal mucosa. What has been repeatedly shown during fasting, however, is that bacteria utilising host-derived substrates proliferate at the expense of those relying on dietary substrates. Considering the increased recognition of the gut microbiome's role in maintaining host (metabolic) health, disentangling host-microbe interactions and establishing their physiological relevance in the context of fasting and caloric restriction is crucial. Such insights could aid in moving away from associations of gut bacterial signatures with metabolic diseases consistently reported in observational studies to potentially establishing causality. Therefore, this review aims to summarise what is currently known or still controversial about the interplay between fasting and caloric restriction, the gut microbiome and intestinal tissue physiology.


Asunto(s)
Restricción Calórica , Microbioma Gastrointestinal , Ecosistema , Ayuno/fisiología , Dieta , Microbioma Gastrointestinal/fisiología
2.
Microbiol Spectr ; 10(6): e0015722, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36318010

RESUMEN

Food resources are vital for animals to survive, and gut microbiota play an essential role in transferring nutritional materials into functional metabolites for hosts. Although the fact that diet affects host microbiota is well known, its impacts on offspring remain unclear. In this study, we assessed the effects of low-protein and niacin-deficient diets on reproduction performance, body growth, and gut microbiota of greater long-tailed hamsters (Tscherskia triton) under laboratory conditions. We found that maternal low-protein diet (not niacin deficiency) had a significant negative effect on reproduction performance of female hamsters (longer mating latency with males and smaller litter size) and body growth (lower body weight) of both female hamsters and their offspring. Both protein- and niacin-deficient diets showed significant maternal effects on the microbial community in the offspring. A maternal low-protein diet (not niacin deficiency) significantly reduced the abundance of major bacterial taxa producing short-chain fatty acids, increased the abundance of probiotic taxa, and altered microbial function in the offspring. The negative effects of maternal nutritional deficiency on gut microbiota are more pronounced in the protein group than the niacin group and in offspring more than in female hamsters. Our results suggest that a low-protein diet could alter gut microbiota in animals, which may result in negative impacts on their fitness. It is necessary to conduct further analysis to reveal the roles of nutrition, as well as its interaction with gut microbes, in affecting fitness of greater long-tailed hamsters under field conditions. IMPORTANCE Gut microbes are known to be essential for hosts to digest food and absorb nutrients. Currently, it is still unclear how maternal nutrient deficiency affects the fitness of animals by its effect on gut microbes. Here, we evaluated the effects of protein- and niacin-deficient diets on mating behavior, reproduction, body growth, and gut microbiota of both mothers and offspring of the greater long-tailed hamster (Tscherskia triton) under laboratory conditions. We found that a low-protein diet significantly reduced maternal reproduction performance and body growth of both mothers and their offspring. Both protein and niacin deficiencies showed significant maternal effects on the microbial community of the offspring. Our results hint that nutritional deficiency may be a potential factor in causing the observed sustained population decline of the greater long-tailed hamsters due to intensified monoculture in the North China Plain, and this needs further field investigation.


Asunto(s)
Microbioma Gastrointestinal , Desnutrición , Cricetinae , Masculino , Animales , Femenino , Reproducción , Dieta , Proteínas en la Dieta
3.
Biol Rev Camb Philos Soc ; 97(6): 2174-2194, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35942895

RESUMEN

Climate is a major extrinsic factor affecting the population dynamics of many organisms. The Broad-Scale Climate Hypothesis (BSCH) was proposed by Elton to explain the large-scale synchronous population cycles of animals, but the extent of support and whether it differs among taxa and geographical regions is unclear. We reviewed publications examining the relationship between the population dynamics of multiple taxa worldwide and the two most commonly used broad-scale climate indices, El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). Our review and synthesis (based on 561 species from 221 papers) reveals that population changes of mammals, birds and insects are strongly affected by major oceanic shifts or irregular oceanic changes, particularly in ENSO- and NAO-influenced regions (Pacific and Atlantic, respectively), providing clear evidence supporting Elton's BSCH. Mammal and insect populations tended to increase during positive ENSO phases. Bird populations tended to increase in positive NAO phases. Some species showed dual associations with both positive and negative phases of the same climate index (ENSO or NAO). These findings indicate that some taxa or regions are more or less vulnerable to climate fluctuations and that some geographical areas show multiple weather effects related to ENSO or NAO phases. Beyond confirming that animal populations are influenced by broad-scale climate variation, we document extensive patterns of variation among taxa and observe that the direct biotic and abiotic mechanisms for these broad-scale climate factors affecting animal populations are very poorly understood. A practical implication of our research is that changes in ENSO or NAO can be used as early signals for pest management and wildlife conservation. We advocate integrative studies at both broad and local scales to unravel the omnipresent effects of climate on animal populations to help address the challenge of conserving biodiversity in this era of accelerated climate change.


Asunto(s)
Cambio Climático , El Niño Oscilación del Sur , Animales , Tiempo (Meteorología) , Dinámica Poblacional , Aves , Insectos , Mamíferos
4.
Ecohealth ; 19(2): 190-202, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35665871

RESUMEN

Fibropapillomatosis (FP) threatens the survival of green turtle (Chelonia mydas) populations at a global scale, and human activities are regularly pointed as causes of high FP prevalence. However, the association of ecological factors with the disease's severity in complex coastal systems has not been well established and requires further studies. Based on a set of 405 individuals caught over ten years, this preliminary study provides the first insight of FP in Martinique Island, which is a critical development area for immature green turtles. Our main results are: (i) 12.8% of the individuals were affected by FP, (ii) FP has different prevalence and temporal evolution between very close sites, (iii) green turtles are more frequently affected on the upper body part such as eyes (41.4%), fore flippers (21.9%), and the neck (9.4%), and (iv) high densities of individuals are observed on restricted areas. We hypothesise that turtle's aggregation enhances horizontal transmission of the disease. FP could represent a risk for immature green turtles' survival in the French West Indies, a critical development area, which replenishes the entire Atlantic population. Continuing scientific monitoring is required to identify which factors are implicated in this panzootic disease and ensure the conservation of the green turtle at an international scale.


Asunto(s)
Tortugas , Animales , Martinica/epidemiología , Prevalencia
5.
J Cachexia Sarcopenia Muscle ; 12(6): 1690-1703, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34668663

RESUMEN

BACKGROUND: Fasting is attracting an increasing interest as a potential strategy for managing diseases, including metabolic disorders and complementary cancer therapy. Despite concerns of clinicians regarding protein catabolism and muscle loss, evidence-based clinical data in response to long-term fasting in healthy humans are scarce. The objective of this study was to measure clinical constants, metabolic, and muscular response in healthy men during and after a 10 day fast combined with a physical activity programme. METHODS: Sixteen men (44 ± 14 years; 26.2 ± 0.9 kg/m2 ) fasted with a supplement of 200-250 kcal/day and up to 3 h daily low-intensity physical activity according to the peer-reviewed Buchinger Wilhelmi protocol. Changes in body weight (BW) and composition, basal metabolic rate (BMR), physical activity, muscle strength and function, protein utilization, inflammatory, and metabolic status were assessed during the 10 day fast, the 4 days of food reintroduction, and at 3 month follow-up. RESULTS: The 10 day fast decreased BW by 7% (-5.9 ± 0.2 kg, P < 0.001) and BMR by 12% (P < 0.01). Fat mass and lean soft tissues (LST) accounted for about 40% and 60% of weight loss, respectively, -2.3 ± 0.18 kg and -3.53 ± 0.13 kg, P < 0.001. LST loss was explained by the reduction in extracellular water (44%), muscle and liver glycogen and associated water (14%), and metabolic active lean tissue (42%). Plasma 3-methyl-histidine increased until Day 5 of fasting and then decreased, suggesting that protein sparing might follow early proteolysis. Daily steps count increased by 60% (P < 0.001) during the fasting period. Strength was maintained in non-weight-bearing muscles and increased in weight-bearing muscles (+33%, P < 0.001). Glycaemia, insulinemia, blood lipids, and blood pressure dropped during the fast (P < 0.05 for all), while non-esterified fatty acids and urinary beta-hydroxybutyrate increased (P < 0.01 for both). After a transient reduction, inflammatory cytokines returned to baseline at Day 10 of fasting, and LST were still lower than baseline values (-2.3% and -3.2%, respectively; P < 0.05 for both). CONCLUSIONS: A 10 day fast appears safe in healthy humans. Protein loss occurs in early fast but decreases as ketogenesis increases. Fasting combined with physical activity does not negatively impact muscle function. Future studies will need to confirm these first findings.


Asunto(s)
Adaptación Fisiológica , Ayuno , Adulto , Ejercicio Físico , Humanos , Masculino , Persona de Mediana Edad , Músculos , Estudios Prospectivos
6.
Front Physiol ; 12: 634953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679446

RESUMEN

Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.

7.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825252

RESUMEN

Food deprivation resulting in muscle atrophy may be detrimental to health. To better understand how muscle mass is regulated during such a nutritional challenge, the current study deciphered muscle responses during phase 2 (P2, protein sparing) and phase 3 (P3, protein mobilization) of prolonged fasting in rats. This was done using transcriptomics analysis and a series of biochemistry measurements. The main findings highlight changes for plasma catabolic and anabolic stimuli, as well as for muscle transcriptome, energy metabolism, and oxidative stress. Changes were generally consistent with the intense use of lipids as fuels during P2. They also reflected increased muscle protein degradation and repressed synthesis, in a more marked manner during P3 than P2 compared to the fed state. Nevertheless, several unexpected changes appeared to be in favor of muscle protein synthesis during fasting, notably at the level of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, transcription and translation processes, and the response to oxidative stress. Such mechanisms might promote protein sparing during P2 and prepare the restoration of the protein compartment during P3 in anticipation of food intake for optimizing the effects of an upcoming refeeding, thereby promoting body maintenance and survival. Future studies should examine relevance of such targets for improving nitrogen balance during catabolic diseases.


Asunto(s)
Ayuno/fisiología , Proteínas Musculares/genética , Atrofia Muscular/genética , Estrés Oxidativo/genética , Animales , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hormonas/sangre , Péptidos y Proteínas de Señalización Intercelular/sangre , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Atrofia Muscular/metabolismo , Estrés Oxidativo/fisiología , Ratas Sprague-Dawley , Urea/sangre
8.
R Soc Open Sci ; 7(5): 200139, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32537218

RESUMEN

The identification of sea turtle behaviours is a prerequisite to predicting the activities and time-budget of these animals in their natural habitat over the long term. However, this is hampered by a lack of reliable methods that enable the detection and monitoring of certain key behaviours such as feeding. This study proposes a combined approach that automatically identifies the different behaviours of free-ranging sea turtles through the use of animal-borne multi-sensor recorders (accelerometer, gyroscope and time-depth recorder), validated by animal-borne video-recorder data. We show here that the combination of supervised learning algorithms and multi-signal analysis tools can provide accurate inferences of the behaviours expressed, including feeding and scratching behaviours that are of crucial ecological interest for sea turtles. Our procedure uses multi-sensor miniaturized loggers that can be deployed on free-ranging animals with minimal disturbance. It provides an easily adaptable and replicable approach for the long-term automatic identification of the different activities and determination of time-budgets in sea turtles. This approach should also be applicable to a broad range of other species and could significantly contribute to the conservation of endangered species by providing detailed knowledge of key animal activities such as feeding, travelling and resting.

9.
Biol Chem ; 401(3): 389-405, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31398141

RESUMEN

Various pathophysiological situations of negative energy balance involve the intense depletion of the body's energy reserves. White adipose tissue is a central place to store energy and a major endocrine organ. As a model of choice to better understand how the white adipose tissue dynamically responds to changes in substrate availability, we used the prolonged fasting paradigm, which is characterized by successive periods of stimulated (phase 2) and then reduced (phase 3) lipid mobilization/utilization. Using omics analyses, we report a regulatory transcriptional program in rat epididymal (EPI) adipose tissue favoring lipolysis during phase 2 and repressing it during phase 3. Changes in gene expression levels of lipases, lipid droplet-associated factors, and the proteins involved in cAMP-dependent and cAMP-independent regulation of lipolysis are highlighted. The mRNA and circulating levels of adipose-secreted factors were consistent with the repression of insulin signaling during prolonged fasting. Other molecular responses are discussed, including the regulation of leptin and adiponectin levels, the specific changes reflecting an increased fibrinolysis and a possible protein catabolism-related energy saving mechanism in late fasting. Finally, some differences between internal and subcutaneous (SC) adipose tissues are also reported. These data provide a comprehensive molecular basis of adipose tissue responses when facing a major energetic challenge.


Asunto(s)
Tejido Adiposo/metabolismo , Ayuno/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Animales , Masculino , Proteoma/genética , Ratas , Ratas Sprague-Dawley
10.
J Nutr Sci ; 8: e36, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798864

RESUMEN

Fasting is increasingly popular to manage metabolic and inflammatory diseases. Despite the role that the human gut microbiota plays in health and diseases, little is known about its composition and functional capacity during prolonged fasting when the external nutrient supply is reduced or suppressed. We analysed the effects of a 10-d periodic fasting on the faecal microbiota of fifteen healthy men. Participants fasted according to the peer-reviewed Buchinger fasting guidelines, which involve a daily energy intake of about 1046 kJ (250 kcal) and an enema every 2 d. Serum biochemistry confirmed the metabolic switch from carbohydrates to fatty acids and ketones. Emotional and physical well-being were enhanced. Faecal 16S rRNA gene amplicon sequencing showed that fasting caused a decrease in the abundance of bacteria known to degrade dietary polysaccharides such as Lachnospiraceae and Ruminococcaceae. There was a concomitant increase in Bacteroidetes and Proteobacteria (Escherichia coli and Bilophila wadsworthia), known to use host-derived energy substrates. Changes in taxa abundance were associated with serum glucose and faecal branched-chain amino acids (BCAA), suggesting that fasting-induced changes in the gut microbiota are associated with host energy metabolism. These effects were reversed after 3 months. SCFA levels were unchanged at the end of the fasting. We also monitored intestinal permeability and inflammatory status. IL-6, IL-10, interferon γ and TNFα levels increased when food was reintroduced, suggesting a reactivation of the postprandial immune response. We suggest that changes in the gut microbiota are part of the physiological adaptations to a 10-d periodic fasting, potentially influencing its beneficial health effects.


Asunto(s)
Metabolismo Energético , Ayuno , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Adolescente , Adulto , Anciano , Aminoácidos de Cadena Ramificada/farmacología , Bacterias/clasificación , Bacterias/genética , Carbohidratos de la Dieta/farmacología , Heces/microbiología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Humanos , Inflamación , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Intestinos , Masculino , Persona de Mediana Edad , Permeabilidad/efectos de los fármacos , Polisacáridos/farmacología , ARN Ribosómico 16S/genética , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
11.
Biol Open ; 8(12)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31757806

RESUMEN

The change of animal biometrics (body mass and body size) can reveal important information about their living environment as well as determine the survival potential and reproductive success of individuals and thus the persistence of populations. However, weighing individuals like marine turtles in the field presents important logistical difficulties. In this context, estimating body mass (BM) based on body size is a crucial issue. Furthermore, the determinants of the variability of the parameters for this relationship can provide information about the quality of the environment and the manner in which individuals exploit the available resources. This is of particular importance in young individuals where growth quality might be a determinant of adult fitness. Our study aimed to validate the use of different body measurements to estimate BM, which can be difficult to obtain in the field, and explore the determinants of the relationship between BM and size in juvenile green turtles. Juvenile green turtles were caught, measured, and weighed over 6 years (2011-2012; 2015-2018) at six bays to the west of Martinique Island (Lesser Antilles). Using different datasets from this global database, we were able to show that the BM of individuals can be predicted from body measurements with an error of less than 2%. We built several datasets including different morphological and time-location information to test the accuracy of the mass prediction. We show a yearly and north-south pattern for the relationship between BM and body measurements. The year effect for the relationship of BM and size is strongly correlated with net primary production but not with sea surface temperature or cyclonic events. We also found that if the bay locations and year effects were removed from the analysis, the mass prediction degraded slightly but was still less than 3% on average. Further investigations of the feeding habitats in Martinique turtles are still needed to better understand these effects and to link them with geographic and oceanographic conditions.

12.
J Exp Biol ; 222(Pt 20)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31624105

RESUMEN

Like all birds, penguins undergo periodic molt, during which they replace old feathers. However, unlike other birds, penguins replace their entire plumage within a short period while fasting ashore. During molt, king penguins (Aptenodytes patagonicus) lose half of their initial body mass, most importantly their insulating subcutaneous fat and half of their pectoral muscle mass. The latter might challenge their capacity to generate and sustain a sufficient mechanical power output to swim to distant food sources and propel themselves to great depth for successful prey capture. To investigate the effects of the annual molt fast on their dive/foraging performance, we studied various dive/foraging parameters and peripheral temperature patterns in immature king penguins across two molt cycles, after birds had spent their first and second year at sea, using implanted data-loggers. We found that the dive/foraging performance of immature king penguins was significantly reduced during post-molt foraging trips. Dive and bottom duration for a given depth were shorter during post-molt and post-dive surface interval duration was longer, reducing overall dive efficiency and underwater foraging time. We attribute this decline to the severe physiological changes that birds undergo during their annual molt. Peripheral temperature patterns differed greatly between pre- and post-molt trips, indicating the loss of the insulating subcutaneous fat layer during molt. Peripheral perfusion, as inferred from peripheral temperature, was restricted to short periods at night during pre-molt but occurred throughout extended periods during post-molt, reflecting the need to rapidly deposit an insulating fat layer during the latter period.


Asunto(s)
Buceo/fisiología , Muda/fisiología , Spheniscidae/fisiología , Animales , Plumas/crecimiento & desarrollo , Conducta Alimentaria/fisiología , Femenino , Masculino , Océanos y Mares , Temperatura
13.
Integr Zool ; 14(1): 48-64, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30251470

RESUMEN

Bio-loggers are miniaturized autonomous devices that record quantitative data on the state of free-ranging animals (e.g. behavior, position and physiology) and their natural environment. This is especially relevant for species where direct visual observation is difficult or impossible. Today, ongoing technical development allows the monitoring of numerous parameters in an increasing range of species over extended periods. However, the external attachment of devices might affect various aspects of animal performance (energetics, thermoregulation, foraging as well as social and reproductive behavior), which ultimately affect fitness. External attachment might also increase entanglement risk and the conspicuousness of animals, leaving them more vulnerable to predation. By contrast, implantation of devices can mitigate many of these undesirable effects and might be preferable, especially for long-term studies, provided that the many challenges associated with surgical procedures can be mastered. Implantation may then allow us to gather data that would be impossible to obtain otherwise and thereby may provide new and ecologically relevant insights into the life of wild animals. Here, we: (i) discuss the pros and cons of attachment methods; (ii) highlight recent field studies that used implanted bio-loggers to address eco-physiological questions in a wide range of species; and (iii) discuss logger implantation in light of ethical considerations.


Asunto(s)
Animales Salvajes , Conducta Animal/fisiología , Monitoreo Fisiológico/veterinaria , Animales , Ambiente , Monitoreo Fisiológico/instrumentación , Actividad Motora
15.
Integr Zool ; 14(1): 65-74, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30585402

RESUMEN

Agriculture intensification, marked by the generalization of crop monoculture, by the increase in plot size and by the reduction of plant diversity, has led to huge decline in wildlife in European farmlands. In such habitat, research has long been biased towards birds and invertebrates, while very few studies have investigated the effect on small mammals. Considering the European hamster, Cricetus cricetus, we therefore review the different techniques that can be used to investigate the impact of environmental changes and conservation measures in small and endangered wild mammals. We suggest that only a multidisciplinary approach will allow exploration of these effects, combining experimental laboratory work on captive-bred animals with the monitoring of wild individuals. In particular, individual energy balance has to be investigated and measured as accurately as possible, through either biochemical or bio-logging techniques. It is, indeed, the most affected physiological trait in a changing environment, as it determines both the reproductive output and the survival of the individual. We also discuss the inconvenience of capture-release approaches for such an endangered species and emphasize the disturbance that experimental protocols could impose on the hamster.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Cricetinae/fisiología , Especies en Peligro de Extinción , Animales , Animales Salvajes , Dinámica Poblacional
16.
Ecol Evol ; 8(24): 12790-12802, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30619583

RESUMEN

Although it is commonly assumed that female sea turtles always return to the beach they hatched, the pathways they use during the years preceding their first reproduction and their natal origins are most often unknown, as it is the case for juvenile green turtles found in Martinique waters in the Caribbean. Given the oceanic circulation of the Guiana current flowing toward Martinique and the presence of important nesting sites for this species in Suriname and French Guiana, we may assume that a large proportion of the juvenile green turtles found in Martinique are originating from the Suriname-French Guiana beaches. To confirm this hypothesis, we performed mixed stock analysis (MSA) on 40 green turtles sampled in Martinique Island and satellite tracked 31 juvenile green turtles tagged in Martinique to (a) assess their natal origin and (b) identify their destination. Our results from MSA confirm that these juveniles are descendant from females laying on several Caribbean and Atlantic beaches, mostly from Suriname and French Guiana, but also from more southern Brazilian beaches. These results were confirmed by the tracking data as the 10 turtles leaving Martinique headed across the Caribbean-Atlantic region in six different directions and 50% of these turtles reached the Brazilian foraging grounds used by the adult green turtles coming from French Guiana. One turtle left the French Guianan coast to perform the first transatlantic migration ever recorded in juvenile green turtles, swimming toward Guinea-Bissau, which is the most important nesting site for green turtles along the African coast. The extensive movements of the migrant turtles evidenced the crossing of international waters and more than 25 exclusive economic zones, reinforcing the need for an international cooperative network to ensure the conservation of future breeders in this endangered species.

17.
J Exp Biol ; 220(Pt 14): 2666-2678, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28724705

RESUMEN

Little is known about the early life at sea of marine top predators, like deep-diving king penguins (Aptenodytes patagonicus), although this dispersal phase is probably a critical phase in their life. Apart from finding favourable foraging sites, they have to develop effective prey search patterns as well as physiological capacities that enable them to capture sufficient prey to meet their energetic needs. To investigate the ontogeny of their thermoregulatory responses at sea, we implanted 30 juvenile king penguins and 8 adult breeders with a small data logger that recorded pressure and subcutaneous temperature continuously for up to 2.5 years. We found important changes in the development of peripheral temperature patterns of foraging juvenile king penguins throughout their first year at sea. Peripheral temperature during foraging bouts fell to increasingly lower levels during the first 6 months at sea, after which it stabilized. Most importantly, these changes re-occurred during their second year at sea, after birds had fasted for ∼4 weeks on land during their second moult. Furthermore, similar peripheral temperature patterns were also present in adult birds during foraging trips throughout their breeding cycle. We suggest that rather than being a simple consequence of concurrent changes in dive effort or an indication of a physiological maturation process, these seasonal temperature changes mainly reflect differences in thermal insulation. Heat loss estimates for juveniles at sea were initially high but declined to approximately half after ∼6 months at sea, suggesting that juvenile king penguins face a strong energetic challenge during their early oceanic existence.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Spheniscidae/fisiología , Animales , Conducta Apetitiva/fisiología , Buceo/fisiología , Femenino , Masculino , Muda , Estaciones del Año , Spheniscidae/crecimiento & desarrollo , Grasa Subcutánea
18.
PLoS Biol ; 15(3): e2001656, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28350825

RESUMEN

The Strategic Plan for Biodiversity, adopted under the auspices of the Convention on Biological Diversity, provides the basis for taking effective action to curb biodiversity loss across the planet by 2020-an urgent imperative. Yet, Antarctica and the Southern Ocean, which encompass 10% of the planet's surface, are excluded from assessments of progress against the Strategic Plan. The situation is a lost opportunity for biodiversity conservation globally. We provide such an assessment. Our evidence suggests, surprisingly, that for a region so remote and apparently pristine as the Antarctic, the biodiversity outlook is similar to that for the rest of the planet. Promisingly, however, much scope for remedial action exists.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/tendencias , Regiones Antárticas , Conservación de los Recursos Naturales/métodos
19.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(2): 197-207, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-26679241

RESUMEN

The green turtle Chelonia mydas undertakes wide-ranging migrations between feeding and nesting sites, resulting in mixing and isolation of genetic stocks. We used mtDNA control region to characterize the genetic composition, population structure, and natal origins of C. mydas in the West Atlantic Ocean, at one feeding ground (State of Rio de Janeiro, Brazil), and three Caribbean nesting grounds (French Guiana, Guadeloupe, and Suriname). The feeding ground presented considerable frequency of common haplotypes from the South Atlantic, whereas the nesting sites presented a major contribution of the most common haplotype from the Caribbean. MSA revealed multiple origins of individuals at the feeding ground, notably from Ascension Island, Guinea Bissau, and French Guiana. This study enables a better understanding of the dispersion patterns and highlights the importance of connecting both nesting and feeding areas. Effective conservation initiatives need to encompass these ecologically and geographically distinct sites as well as those corridors connecting them.


Asunto(s)
ADN Mitocondrial , Variación Genética , Genética de Población , Tortugas/genética , Animales , Océano Atlántico , Brasil , Femenino , Flujo Génico , Genoma Mitocondrial , Haplotipos , Filogeografía , Análisis de Secuencia de ADN
20.
Sci Rep ; 6: 39008, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27991520

RESUMEN

While safety of fasting therapy is debated in humans, extended fasting occurs routinely and safely in wild animals. To do so, food deprived animals like breeding penguins anticipate the critical limit of fasting by resuming feeding. To date, however, no molecular indices of the physiological state that links spontaneous refeeding behaviour with fasting limits had been identified. Blood proteomics and physiological data reveal here that fasting-induced body protein depletion is not unsafe "per se". Indeed, incubating penguins only abandon their chick/egg to refeed when this state is associated with metabolic defects in glucose homeostasis/fatty acid utilization, insulin production and action, and possible renal dysfunctions. Our data illustrate how the field investigation of "exotic" models can be a unique source of information, with possible biomedical interest.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Ayuno/sangre , Seguridad , Spheniscidae/sangre , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...