Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Microbiol ; 120: 104463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431337

RESUMEN

This study aimed to explore the non-volatile metabolomic variability of a large panel of strains (44) belonging to the Saccharomyces cerevisiae and Saccharomyces uvarum species in the context of the wine alcoholic fermentation. For the S. cerevisiae strains flor, fruit and wine strains isolated from different anthropic niches were compared. This phenotypic survey was achieved with a special focus on acidity management by using natural grape juices showing opposite level of acidity. A 1H NMR based metabolomics approach was developed for quantifying fifteen wine metabolites that showed important quantitative variability within the strains. Thanks to the robustness of the assay and the low amount of sample required, this tool is relevant for the analysis of the metabolomic profile of numerous wines. The S. cerevisiae and S. uvarum species displayed significant differences for malic, succinic, and pyruvic acids, as well as for glycerol and 2,3-butanediol production. As expected, S. uvarum showed weaker fermentation fitness but interesting acidifying properties. The three groups of S. cerevisiae strains showed different metabolic profiles mostly related to their production and consumption of organic acids. More specifically, flor yeast consumed more malic acid and produced more acetic acid than the other S. cerevisiae strains which was never reported before. These features might be linked to the ability of flor yeasts to shift their metabolism during wine oxidation.


Asunto(s)
Saccharomyces , Vitis , Vino , Saccharomyces cerevisiae/metabolismo , Saccharomyces/genética , Vino/análisis , Vitis/metabolismo , Fermentación , Ácido Acético/metabolismo
2.
Metabolomics ; 19(7): 65, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418094

RESUMEN

INTRODUCTION: Absolute quantification of individual metabolites in complex biological samples is crucial in targeted metabolomic profiling. OBJECTIVES: An inter-laboratory test was performed to evaluate the impact of the NMR software, peak-area determination method (integration vs. deconvolution) and operator on quantification trueness and precision. METHODS: A synthetic urine containing 32 compounds was prepared. One site prepared the urine and calibration samples, and performed NMR acquisition. NMR spectra were acquired with two pulse sequences including water suppression used in routine analyses. The pre-processed spectra were sent to the other sites where each operator quantified the metabolites using internal referencing or external calibration, and his/her favourite in-house, open-access or commercial NMR tool. RESULTS: For 1D NMR measurements with solvent presaturation during the recovery delay (zgpr), 20 metabolites were successfully quantified by all processing strategies. Some metabolites could not be quantified by some methods. For internal referencing with TSP, only one half of the metabolites were quantified with a trueness below 5%. With peak integration and external calibration, about 90% of the metabolites were quantified with a trueness below 5%. The NMRProcFlow integration module allowed the quantification of several additional metabolites. The number of quantified metabolites and quantification trueness improved for some metabolites with deconvolution tools. Trueness and precision were not significantly different between zgpr- and NOESYpr-based spectra for about 70% of the variables. CONCLUSION: External calibration performed better than TSP internal referencing. Inter-laboratory tests are useful when choosing to better rationalize the choice of quantification tools for NMR-based metabolomic profiling and confirm the value of spectra deconvolution tools.


Asunto(s)
Líquidos Corporales , Metabolómica , Femenino , Masculino , Humanos , Metabolómica/métodos , Flujo de Trabajo , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Líquidos Corporales/química
3.
Molecules ; 26(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34833863

RESUMEN

The chemical composition of wine is known to be influenced by multiple factors including some viticulture practices and winemaking processes. 1H-NMR metabolomics has been successfully applied to the study of wine authenticity. In the present study, 1H-NMR metabolomics in combination with multivariate analysis was applied to investigate the effects of grape maturity and enzyme and fining treatments on Cabernet Sauvignon wines. A total of forty wine metabolites were quantified. Three different stages of maturity were studied (under-maturity, maturity and over-maturity). Enzyme treatments were carried out using two pectolytic enzymes (E1 and E2). Finally, two proteinaceous fining treatments were compared (vegetable protein, fining F1; pea protein and PVPP, fining F2). The results show a clear difference between the three stages of maturity, with an impact on different classes of metabolites including amino acids, organic acids, sugars, phenolic compounds, alcohols and esters. A clear separation between enzymes E1 and E2 was observed. Both fining agents had a significant effect on metabolite concentrations. The results demonstrate that 1H-NMR metabolomics provides a fast and robust approach to study the effect of winemaking processes on wine metabolites. These results support the interest to pursue the development of 1H-NMR metabolomics to investigate the effects of winemaking on wine quality.


Asunto(s)
Metabolómica , Resonancia Magnética Nuclear Biomolecular , Vitis/química , Vino/análisis
4.
Metabolomics ; 15(5): 67, 2019 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-31030265

RESUMEN

INTRODUCTION: Grapevine protection is an important issue in viticulture. To reduce pesticide use, sustainable disease control strategies are proposed, including a promising alternative method based on the elicitor-triggered stimulation of the grapevine natural defense responses. However, detailed investigations are necessary to characterize the impact of such defense induction on the primary metabolism. OBJECTIVES: Our aim was to use a metabolomics approach to assess the impact on grapevine of different elicitors dependent on the salicylic acid (SA) and/or jasmonic acid (JA) pathway. For this purpose, leaves of grapevine foliar cuttings were treated with methyl jasmonate, acibenzolar-S-methyl or phosphonates. METHODS: According to the elicitor, common and discriminating metabolites were elucidated using 1H NMR measurements and principal component analysis. RESULTS: A wide range of compounds including carbohydrates, amino acids, organic acids, phenolics and amines were identified. The score plots obtained by combining PC1 versus PC2 and PC1 versus PC3 allowed a clear separation of samples, so metabolite fingerprinting showed an extensive reprogramming of primary metabolic pathways after elicitation. CONCLUSION: The methods applied were found to be accurate for the rapid determination and differential characterization of plant samples based on their metabolic composition. These investigations can be very useful because the application of plant defense stimulators is gaining greater importance as an alternative strategy to pesticides in the vineyard.


Asunto(s)
Metabolómica , Hojas de la Planta/metabolismo , Vitis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/química , Análisis de Componente Principal , Espectroscopía de Protones por Resonancia Magnética , Ácido Salicílico/metabolismo , Vitis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...