Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neural Transm (Vienna) ; 127(1): 27-34, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31807953

RESUMEN

Using midbrain cultures, we previously demonstrated that the noble gas xenon is robustly protective for dopamine (DA) neurons exposed to L-trans-pyrrolidine-2,4-dicarboxylate (PDC), an inhibitor of glutamate uptake used to generate sustained, low-level excitotoxic insults. DA cell rescue was observed in conditions where the control atmosphere for cell culture was substituted with a gas mix, comprising the same amount of oxygen (20%) and carbon dioxide (5%) but 75% of xenon instead of nitrogen. In the present study, we first aimed to determine whether DA cell rescue against PDC remains detectable when concentrations of xenon are progressively reduced in the cell culture atmosphere. Besides, we also sought to compare the effect of xenon to that of other noble gases, including helium, neon and krypton. Our results show that the protective effect of xenon for DA neurons was concentration-dependent with an IC50 estimated at about 44%. We also established that none of the other noble gases tested in this study protected DA neurons from PDC-mediated insults. Xenon's effectiveness was most probably due to its unique capacity to block NMDA glutamate receptors. Besides, mathematical modeling of gas diffusion in the culture medium revealed that the concentration reached by xenon at the cell layer level is the highest of all noble gases when neurodegeneration is underway. Altogether, our data suggest that xenon may be of potential therapeutic value in Parkinson disease, a chronic neurodegenerative condition where DA neurons appear vulnerable to slow excitotoxicity.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Helio/farmacología , Criptón/farmacología , Neón/farmacología , Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Xenón/farmacología , Animales , Ácidos Carboxílicos/farmacología , Células Cultivadas , Embrión de Mamíferos , Femenino , Memantina/farmacología , Mesencéfalo , Fármacos Neuroprotectores/administración & dosificación , Piridinas/farmacología , Ratas , Ratas Wistar , Xenón/administración & dosificación
3.
J Neurochem ; 142(1): 14-28, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28398653

RESUMEN

Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder.


Asunto(s)
Anestésicos por Inhalación/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Mesencéfalo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Xenón/farmacología , Animales , Antioxidantes/farmacología , Muerte Celular/efectos de los fármacos , Células Cultivadas , Cromanos/farmacología , Ácidos Dicarboxílicos/antagonistas & inhibidores , Ácidos Dicarboxílicos/toxicidad , Antagonistas de Aminoácidos Excitadores/farmacología , Memantina/farmacología , Técnicas de Cultivo de Órganos , Pirrolidinas/antagonistas & inhibidores , Pirrolidinas/toxicidad , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...