Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 17(1): e1009275, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513206

RESUMEN

Filoviruses, such as the Ebola virus (EBOV) and Marburg virus (MARV), are causative agents of sporadic outbreaks of hemorrhagic fevers in humans. To infect cells, filoviruses are internalized via macropinocytosis and traffic through the endosomal pathway where host cathepsin-dependent cleavage of the viral glycoproteins occurs. Subsequently, the cleaved viral glycoprotein interacts with the late endosome/lysosome resident host protein, Niemann-Pick C1 (NPC1). This interaction is hypothesized to trigger viral and host membrane fusion, which results in the delivery of the viral genome into the cytoplasm and subsequent initiation of replication. Some studies suggest that EBOV viral particles activate signaling cascades and host-trafficking factors to promote their localization with host factors that are essential for entry. However, the mechanism through which these activating signals are initiated remains unknown. By screening a kinase inhibitor library, we found that receptor tyrosine kinase inhibitors potently block EBOV and MARV GP-dependent viral entry. Inhibitors of epidermal growth factor receptor (EGFR), tyrosine protein kinase Met (c-Met), and the insulin receptor (InsR)/insulin like growth factor 1 receptor (IGF1R) blocked filoviral GP-mediated entry and prevented growth of replicative EBOV in Vero cells. Furthermore, inhibitors of c-Met and InsR/IGF1R also blocked viral entry in macrophages, the primary targets of EBOV infection. Interestingly, while the c-Met and InsR/IGF1R inhibitors interfered with EBOV trafficking to NPC1, virus delivery to the receptor was not impaired in the presence of the EGFR inhibitor. Instead, we observed that the NPC1 positive compartments were phenotypically altered and rendered incompetent to permit viral entry. Despite their different mechanisms of action, all three RTK inhibitors tested inhibited virus-induced Akt activation, providing a possible explanation for how EBOV may activate signaling pathways during entry. In sum, these studies strongly suggest that receptor tyrosine kinases initiate signaling cascades essential for efficient post-internalization entry steps.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Animales , Chlorocebus aethiops , Ebolavirus/genética , Endocitosis , Endosomas/metabolismo , Endosomas/virología , Interacciones Huésped-Patógeno , Humanos , Espacio Intracelular/virología , Lisosomas/metabolismo , Transporte de Proteínas , Proteínas Tirosina Quinasas/genética , Células Vero , Virión , Internalización del Virus , Replicación Viral
2.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261140

RESUMEN

The dysregulation of macrophage lipid metabolism drives atherosclerosis. AMP-activated protein kinase (AMPK) is a master regulator of cellular energetics and plays essential roles regulating macrophage lipid dynamics. Here, we investigated the consequences of atherogenic lipoprotein-induced foam cell formation on downstream immunometabolic signaling in primary mouse macrophages. A variety of atherogenic low-density lipoproteins (acetylated, oxidized, and aggregated forms) activated AMPK signaling in a manner that was in part due to CD36 and calcium-related signaling. In quiescent macrophages, basal AMPK signaling was crucial for maintaining markers of lysosomal homeostasis as well as levels of key components in the lysosomal expression and regulation network. Moreover, AMPK activation resulted in targeted upregulation of members of this network via transcription factor EB. However, in lipid-induced macrophage foam cells, neither basal AMPK signaling nor its activation affected lysosomal-associated programs. These results suggest that while the sum of AMPK signaling in cultured macrophages may be anti-atherogenic, atherosclerotic input dampens the regulatory capacity of AMPK signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Células Espumosas/enzimología , Homeostasis , Lisosomas/metabolismo , Animales , Aterosclerosis/metabolismo , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Antígenos CD36/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Células Cultivadas , Activación Enzimática , Femenino , Metabolismo de los Lípidos , Lipoproteínas/metabolismo , Masculino , Ratones , Ratones Noqueados , Transducción de Señal , Transcripción Genética , Regulación hacia Arriba/genética
3.
J Lipid Res ; 61(12): 1697-1706, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32978273

RESUMEN

The dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis. Using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), we aimed to clarify the role of myeloid-specific AMPK signaling in male and female mice made acutely atherosclerotic by injection of AAV vector encoding a gain-of-function mutant PCSK9 (PCSK9-AAV) and WD feeding. After 6 weeks of WD feeding, mice received a daily injection of either the AMPK activator A-769662 or a vehicle control for an additional 6 weeks. Following this (12 weeks total), we assessed myeloid cell populations and differences between genotype or sex were not observed. Similarly, aortic sinus plaque size, lipid staining, and necrotic area did not differ in male and female MacKO mice compared with their littermate floxed controls. Moreover, therapeutic intervention with A-769662 showed no treatment effect. There were also no observable differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area and markers of autophagy showed no effect of either lacking AMPK signaling or AMPK activation. Our data suggest that while defined roles for each catalytic AMPK subunit have been identified, complete deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Additionally, these findings suggest that intervention with the first-generation AMPK activator A-769662 is not able to stem the progression of atherosclerosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aterosclerosis/terapia , Animales , Aterosclerosis/inmunología , Aterosclerosis/patología , Activación Enzimática , Femenino , Macrófagos/metabolismo , Masculino , Ratones , Transducción de Señal
4.
Hepatol Commun ; 4(6): 876-889, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32490323

RESUMEN

Choline is an essential nutrient and a critical component of the membrane phospholipid phosphatidylcholine (PC), the neurotransmitter acetylcholine, while also contributing to the methylation pathway. In the liver specifically, PC is the major membrane constituent and can be synthesized by the cytidine diphosphate-choline or the phosphatidylethanolamine N-methyltransferase pathway. With the continuing global rise in the rates of obesity and nonalcoholic fatty liver disease, we sought to explore how excess fatty acids on primary hepatocytes and diet-induced obesity affect choline uptake and metabolism. Our results demonstrate that hepatocytes chronically treated with palmitate, but not oleate or a mixture, had decreased choline uptake, which was associated with lower choline incorporation into PC and lower expression of choline transport proteins. Interestingly, a reduction in the rate of degradation spared PC levels in response to palmitate when compared with control. The effects of palmitate treatment were independent of endoplasmic reticulum stress, which counterintuitively augmented choline transport and transporter expression. In a model of obesity-induced hepatic steatosis, male mice fed a 60% high-fat diet for 10 weeks had significantly diminished hepatic choline uptake compared with lean mice fed a control diet. Although the transcript and protein expression of various choline metabolic enzymes fluctuated slightly, we observed reduced protein expression of choline transporter-like 1 (CTL1) in the liver of mice fed a high-fat diet. Polysome profile analyses revealed that in livers of obese mice, the CTL1 transcript, despite being more abundant, was translated to a lesser extent compared with lean controls. Finally, human liver cells demonstrated a similar response to palmitate treatment. Conclusion: Our results suggest that the altered fatty acid milieu seen in obesity-induced fatty liver disease progression may adversely affect choline metabolism, potentially through CTL1, but that compensatory mechanisms work to maintain phospholipid homeostasis.

5.
Molecules ; 24(20)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635211

RESUMEN

Activation of the transcription factor liver X receptor (LXR) has beneficial effects on macrophage lipid metabolism and inflammation, making it a potential candidate for therapeutic targeting in cardiometabolic disease. While small molecule delivery via nanomedicine has promising applications for a number of chronic diseases, questions remain as to how nanoparticle formulation might be tailored to suit different tissue microenvironments and aid in drug delivery. In the current study, we aimed to compare the in vitro drug delivering capability of three nanoparticle (NP) formulations encapsulating the LXR activator, GW-3965. We observed little difference in the base characteristics of standard PLGA-PEG NP when compared to two redox-active polymeric NP formulations, which we called redox-responsive (RR)1 and RR2. Moreover, we also observed similar uptake of these NP into primary mouse macrophages. We used the transcript and protein expression of the cholesterol efflux protein and LXR target ATP-binding cassette A1 (ABCA1) as a readout of GW-3956-induced LXR activation. Following an initial acute uptake period that was meant to mimic circulating exposure in vivo, we determined that although the induction of transcript expression was similar between NPs, treatment with the redox-sensitive RR1 NPs resulted in a higher level of ABCA1 protein. Our results suggest that NP formulations responsive to cellular cues may be an effective tool for targeted and disease-specific drug release.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Benzoatos/farmacología , Bencilaminas/farmacología , Macrófagos/citología , Animales , Benzoatos/química , Bencilaminas/química , Células Cultivadas , Composición de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Receptores X del Hígado/agonistas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Nanopartículas , Poliésteres/química , Polietilenglicoles/química , Cultivo Primario de Células
6.
Viruses ; 11(3)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30832223

RESUMEN

Filoviruses, such as Ebola virus (EBOV) and Marburg virus, are causative agents of unpredictable outbreaks of severe hemorrhagic fevers in humans and non-human primates. For infection, filoviral particles need to be internalized and delivered to intracellular vesicles containing cathepsin proteases and the viral receptor Niemann-Pick C1. Previous studies have shown that EBOV triggers macropinocytosis of the viral particles in a glycoprotein (GP)-dependent manner, but the molecular events required for filovirus internalization remain mostly unknown. Here we report that the diacylglycerol kinase inhibitor, R-59-022, blocks EBOV GP-mediated entry into Vero cells and bone marrow-derived macrophages. Investigation of the mode of action of the inhibitor revealed that it blocked an early step in entry, more specifically, the internalization of the viral particles via macropinocytosis. Finally, R-59-022 blocked viral entry mediated by a panel of pathogenic filovirus GPs and inhibited growth of replicative Ebola virus. Taken together, our studies suggest that R-59-022 could be used as a tool to investigate macropinocytic uptake of filoviruses and could be a starting point for the development of pan-filoviral therapeutics.


Asunto(s)
Diacilglicerol Quinasa/antagonistas & inhibidores , Filoviridae/efectos de los fármacos , Filoviridae/fisiología , Pirimidinonas/farmacología , Tiazoles/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Chlorocebus aethiops , Ebolavirus/fisiología , Células HEK293 , Humanos , Macrófagos/virología , Marburgvirus/fisiología , Pinocitosis/efectos de los fármacos , Receptores Virales , Células Vero , Replicación Viral/efectos de los fármacos
7.
Cell Rep ; 26(8): 2150-2165.e5, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30784596

RESUMEN

The autophagy pathway is an essential facet of the innate immune response, capable of rapidly targeting intracellular bacteria. However, the initial signaling regulating autophagy induction in response to pathogens remains largely unclear. Here, we report that AMPK, an upstream activator of the autophagy pathway, is stimulated upon detection of pathogenic bacteria, before bacterial invasion. Bacterial recognition occurs through the detection of outer membrane vesicles. We found that AMPK signaling relieves mTORC1-mediated repression of the autophagy pathway in response to infection, positioning the cell for a rapid induction of autophagy. Moreover, activation of AMPK and inhibition of mTORC1 in response to bacteria is not accompanied by an induction of bulk autophagy. However, AMPK signaling is required for the selective targeting of bacteria-containing vesicles by the autophagy pathway through the activation of pro-autophagic kinase complexes. These results demonstrate a key role for AMPK signaling in coordinating the rapid autophagic response to bacteria.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Membrana Externa Bacteriana/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Macroautofagia , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Células Cultivadas , Células HCT116 , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Células MCF-7 , Macrófagos/metabolismo , Macrófagos/microbiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos NOD , Salmonella/patogenicidad
8.
FASEB J ; 33(4): 5045-5057, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30615497

RESUMEN

Phosphatidylethanolamine N-methyltransferase (PEMT) is an important enzyme in hepatic phosphatidylcholine (PC) biosynthesis. Pemt-/- mice fed a high-fat diet are protected from obesity and whole-body insulin resistance. However, Pemt-/- mice develop severe nonalcoholic steatohepatitis (NASH). Because NASH is often associated with hepatic insulin resistance, we investigated whether the increased insulin sensitivity in Pemt-/- mice was restricted to nonhepatic tissues or whether the liver was also insulin sensitive. Strikingly, the livers of Pemt-/- mice compared with those of Pemt+/+ mice were not insulin resistant, despite elevated levels of hepatic triacylglycerols and diacylglycerols, as well as increased hepatic inflammation and fibrosis. Endogenous glucose production was lower in Pemt-/- mice under both basal and hyperinsulinemic conditions. Experiments in primary hepatocytes and hepatoma cells revealed improved insulin signaling in the absence of PEMT, which was not due to changes in diacylglycerols, ceramides, or gangliosides. On the other hand, the phospholipid composition in hepatocytes seems critically important for insulin signaling such that lowering the PC:phosphatidylethanolamine (PE) ratio improves insulin signaling. Thus, treatments to reduce the PC:PE ratio in liver may protect against the development of hepatic insulin resistance.-Van der Veen, J. N., Lingrell, S., McCloskey, N., LeBlond, N. D., Galleguillos, D., Zhao, Y. Y., Curtis, J. M., Sipione, S., Fullerton, M. D., Vance, D. E., Jacobs, R. L. A role for phosphatidylcholine and phosphatidylethanolamine in hepatic insulin signaling.


Asunto(s)
Insulina/metabolismo , Hígado/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Animales , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Transducción de Señal/fisiología
9.
Hepatol Commun ; 3(1): 84-98, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30619997

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) regulates multiple signaling pathways involved in glucose and lipid metabolism in response to changes in hormonal and nutrient status. Cell culture studies have shown that AMPK phosphorylation and inhibition of the rate-limiting enzyme in the mevalonate pathway 3-hydroxy-3-methylglutaryl (HMG) coenzyme A (CoA) reductase (HMGCR) at serine-871 (Ser871; human HMGCR Ser872) suppresses cholesterol synthesis. In order to evaluate the role of AMPK-HMGCR signaling in vivo, we generated mice with a Ser871-alanine (Ala) knock-in mutation (HMGCR KI). Cholesterol synthesis was significantly suppressed in wild-type (WT) but not in HMGCR KI hepatocytes in response to AMPK activators. Liver cholesterol synthesis and cholesterol levels were significantly up-regulated in HMGCR KI mice. When fed a high-carbohydrate diet, HMGCR KI mice had enhanced triglyceride synthesis and liver steatosis, resulting in impaired glucose homeostasis. Conclusion: AMPK-HMGCR signaling alone is sufficient to regulate both cholesterol and triglyceride synthesis under conditions of a high-carbohydrate diet. Our findings highlight the tight coupling between the mevalonate and fatty acid synthesis pathways as well as revealing a role of AMPK in suppressing the deleterious effects of a high-carbohydrate diet.

10.
J Biol Chem ; 293(29): 11600-11611, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29880645

RESUMEN

Choline is an essential nutrient that is required for synthesis of the main eukaryote phospholipid, phosphatidylcholine. Macrophages are innate immune cells that survey and respond to danger and damage signals. Although it is well-known that energy metabolism can dictate macrophage function, little is known as to the importance of choline homeostasis in macrophage biology. We hypothesized that the uptake and metabolism of choline are important for macrophage inflammation. Polarization of primary bone marrow macrophages with lipopolysaccharide (LPS) resulted in an increased rate of choline uptake and higher levels of PC synthesis. This was attributed to a substantial increase in the transcript and protein expression of the choline transporter-like protein-1 (CTL1) in polarized cells. We next sought to determine the importance of choline uptake and CTL1 for macrophage immune responsiveness. Chronic pharmacological or CTL1 antibody-mediated inhibition of choline uptake resulted in altered cytokine secretion in response to LPS, which was associated with increased levels of diacylglycerol and activation of protein kinase C. These experiments establish a previously unappreciated link between choline phospholipid metabolism and macrophage immune responsiveness, highlighting a critical and regulatory role for macrophage choline uptake via the CTL1 transporter.


Asunto(s)
Colina/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Fosfolípidos/metabolismo , Animales , Células Cultivadas , Inflamación/patología , Lipogénesis , Macrófagos/patología , Ratones Endogámicos C57BL , Proteínas de Transporte de Catión Orgánico/metabolismo
11.
Methods Mol Biol ; 1732: 477-493, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480494

RESUMEN

Macrophages are a driving force in the development and progression of atherosclerosis, a chronic condition that can lead to cardiovascular disease. In this chapter we describe methods that monitor macrophage cholesterol homeostasis such as cholesterol synthesis, uptake, and efflux, all with the use of AMPK activators and potential genetic models that could help shed light on the role of this metabolic regulator in atherosclerosis and other chronic diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Colesterol/metabolismo , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/farmacología , Macrófagos/metabolismo , Animales , Aterosclerosis/patología , Línea Celular , Medios de Cultivo Condicionados , Metabolismo de los Lípidos/efectos de los fármacos , Cultivo Primario de Células
12.
J Lipid Res ; 58(11): 2188-2196, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28887372

RESUMEN

Recent cell culture and animal studies have suggested that expression of human apo C-III in the liver has a profound impact on the triacylglycerol (TAG)-rich VLDL1 production under lipid-rich conditions. The apoC-III Gln38Lys variant was identified in subjects of Mexican origin with moderate hypertriglyceridemia. We postulated that Gln38Lys (C3QK), being a gain-of-function mutation, promotes hepatic VLDL1 assembly/secretion. To test this hypothesis, we expressed C3QK in McA-RH7777 cells and apoc3-null mice to contrast its effect with WT apoC-III (C3WT). In both model systems, C3QK expression increased the secretion of VLDL1-TAG (by 230%) under lipid-rich conditions. Metabolic labeling experiments with C3QK cells showed an increase in de novo lipogenesis (DNL). Fasting plasma concentration of TAG, cholesterol, cholesteryl ester, and FA were increased in C3QK mice as compared with C3WT mice. Liver of C3QK mice also displayed an increase in DNL and expression of lipogenic genes as compared with that in C3WT mice. These results suggest that C3QK variant is a gain-of-function mutation that can stimulate VLDL1 production, through enhanced DNL.


Asunto(s)
Apolipoproteína C-III/genética , Mutación con Ganancia de Función , Hipertrigliceridemia/genética , Animales , Apolipoproteína C-III/deficiencia , Línea Celular , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Hipertrigliceridemia/metabolismo , Lipogénesis/genética , Lipoproteínas HDL/metabolismo , Masculino , Ratones
13.
J Lipid Res ; 56(5): 1025-33, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25773887

RESUMEN

Atherosclerosis stems from imbalances in lipid metabolism and leads to maladaptive inflammatory responses. The AMP-activated protein kinase (Ampk) is a highly conserved serine/threonine kinase that regulates many aspects of lipid and energy metabolism, although its specific role in controlling macrophage cholesterol homeostasis remains unclear. We sought to address this question by testing the effects of direct Ampk activators in primary bone marrow-derived macrophages from Ampk ß1-deficient (ß1(-/-)) mice. Macrophages from Ampk ß1(-/-) mice had enhanced lipogenic capacity and diminished cholesterol efflux, although cholesterol uptake was unaffected. Direct activation of Ampk ß1 via salicylate (the unacetylated form of aspirin) or A-769662 (a small molecule activator), decreased the synthesis of FAs and sterols in WT but not Ampk ß1(-/-) macrophages. In lipid-laden macrophages, Ampk activation decreased cholesterol content (foam cell formation) and increased cholesterol efflux to HDL and apoA-I, effects that occurred in an Ampk ß1-dependent manner. Increased cholesterol efflux was also associated with increased gene expression of the ATP binding cassette transporters, Abcg1 and Abca1. Moreover, in vivo reverse cholesterol transport was suppressed in mice that received Ampk ß1(-/-) macrophages compared with the WT control. Our data highlight the therapeutic potential of targeting macrophage Ampk with new or existing drugs for the possible reduction in foam cell formation during the early stages of atherosclerosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Colesterol/metabolismo , Activadores de Enzimas/farmacología , Células Espumosas/enzimología , Ácido Salicílico/farmacología , Animales , Apolipoproteína A-I/metabolismo , Aterosclerosis , Células Cultivadas , HDL-Colesterol/metabolismo , Evaluación Preclínica de Medicamentos , Activación Enzimática , Células Espumosas/efectos de los fármacos , Homeostasis , Lipogénesis , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...