Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros










Intervalo de año de publicación
1.
Mol Psychiatry ; 23(6): 1394-1401, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28461701

RESUMEN

Repeated presentations of a previously conditioned stimulus lead to a new form of learning known as extinction, which temporarily alters the response to the original stimulus. Previous studies have shown that the consolidation of extinction memory requires de novo protein synthesis. However, the role of specific nodes of translational control in extinction is unknown. Using auditory threat conditioning in mice, we investigated the role of mechanistic target of rapamycin complex 1 (mTORC1) and its effector p70 S6 kinase 1 (S6K1) in the extinction of auditory threat conditioning. We found that rapamycin attenuated the consolidation of extinction memory. In contrast, genetic deletion and pharmacological inhibition of S6K1, a downstream effector of mTORC1, blocked within-session extinction, indicating a role for S6K1 independent of protein synthesis. Indeed, the activation of S6K1 during extinction required extracellular signal-regulated kinase (ERK) activation in the basolateral nucleus of the amygdala (BLA) and was necessary for increased phosphorylation of the GluA1 (Thr840) subunit of the AMPA receptor following extinction training. Mice exposed to brief uncontrollable stress showed impaired within-session extinction as well as a downregulation of ERK and S6K1 signaling in the amygdala. Finally, using fiber photometry we were able to record calcium signals in vivo, and we found that inhibition of S6K1 reduces extinction-induced changes in neuronal activity of the BLA. These results implicate a novel ERK-S6K1-GluA1 signaling cascade critically involved in extinction.


Asunto(s)
Extinción Psicológica/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Complejo Nuclear Basolateral/metabolismo , Condicionamiento Clásico/fisiología , Condicionamiento Operante , Miedo/fisiología , Aprendizaje , Sistema de Señalización de MAP Quinasas , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Receptores AMPA/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Sirolimus/farmacología
2.
Mol Psychiatry ; 22(1): 24-36, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27752080

RESUMEN

Research on avoidance conditioning began in the late 1930s as a way to use laboratory experiments to better understand uncontrollable fear and anxiety. Avoidance was initially conceived of as a two-factor learning process in which fear is first acquired through Pavlovian aversive conditioning (so-called fear conditioning), and then behaviors that reduce the fear aroused by the Pavlovian conditioned stimulus are reinforced through instrumental conditioning. Over the years, criticisms of both the avoidance paradigm and the two-factor fear theory arose. By the mid-1980s, avoidance had fallen out of favor as an experimental model relevant to fear and anxiety. However, recent progress in understanding the neural basis of Pavlovian conditioning has stimulated a new wave of research on avoidance. This new work has fostered new insights into contributions of not only Pavlovian and instrumental learning but also habit learning, to avoidance, and has suggested that the reinforcing event underlying the instrumental phase should be conceived in terms of cellular and molecular events in specific circuits rather than in terms of vague notions of fear reduction. In our approach, defensive reactions (freezing), actions (avoidance) and habits (habitual avoidance) are viewed as being controlled by unique circuits that operate nonconsciously in the control of behavior, and that are distinct from the circuits that give rise to conscious feelings of fear and anxiety. These refinements, we suggest, overcome older criticisms, justifying the value of the new wave of research on avoidance, and offering a fresh perspective on the clinical implications of this work.


Asunto(s)
Reacción de Prevención/fisiología , Animales , Ansiedad/psicología , Ansiedad/terapia , Condicionamiento Clásico , Condicionamiento Operante/fisiología , Condicionamiento Psicológico , Miedo/psicología , Humanos , Refuerzo en Psicología
3.
Front Behav Neurosci ; 4: 162, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21048893

RESUMEN

Norepinephrine (NE) is thought to play a key role in fear and anxiety, but its role in amygdala-dependent Pavlovian fear conditioning, a major model for understanding the neural basis of fear, is poorly understood. The lateral nucleus of the amygdala (LA) is a critical brain region for fear learning and regulating the effects of stress on memory. To understand better the cellular mechanisms of NE and its adrenergic receptors in the LA, we used antibodies directed against dopamine beta-hydroxylase (DßH), the synthetic enzyme for NE, or against two different isoforms of the beta-adrenergic receptors (ßARs), one that predominately recognizes neurons (ßAR 248) and the other astrocytes (ßAR 404), to characterize the microenvironments of DßH and ßAR. By electron microscopy, most DßH terminals did not make synapses, but when they did, they formed both asymmetric and symmetric synapses. By light microscopy, ßARs were present in both neurons and astrocytes. Confocal microscopy revealed that both excitatory and inhibitory neurons express ßAR248. By electron microscopy, ßAR 248 was present in neuronal cell bodies, dendritic shafts and spines, and some axon terminals and astrocytes. When in dendrites and spines, ßAR 248 was frequently concentrated along plasma membranes and at post-synaptic densities of asymmetric (excitatory) synapses. ßAR 404 was expressed predominately in astrocytic cell bodies and processes. These astrocytic processes were frequently interposed between unlabeled terminals or ensheathed asymmetric synapses. Our findings provide a morphological basis for understanding ways in which NE may modulate transmission by acting via synaptic or non-synaptic mechanisms in the LA.

4.
Genes Brain Behav ; 8(8): 735-43, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19689454

RESUMEN

The lateral nucleus of the amygdala (LA) has been implicated in the formation of long-term associative memory (LTM) of stimuli associated with danger through fear conditioning. The current study aims to detect genes that are expressed in LA following associative fear conditioning. Using oligonucleotide microarrays, we monitored gene expression in rats subjected to paired training where a tone co-terminates with a footshock, or unpaired training where the tone and footshock are presented in a non-overlapping manner. The paired protocol consistently leads to auditory fear conditioning memory formation, whereas the unpaired protocol does not. When the paired group was compared with the unpaired group 5 h after training, the expression of genes coding for the limbic system-associated membrane protein (Lsamp), kinesin heavy chain member 2 (Kif2), N-ethylmaleimide-sensitive fusion protein (NSF) and Hippocalcin-like 4 protein (Hpcal4) was higher in the paired group. These genes encode proteins that regulate neuronal axonal morphology (Lsamp, Kif2), presynaptic vesicle cycling and release (Hpcal4 and NSF), and AMPA receptor maintenance in synapses (NSF). Quantitative real-time PCR (qPCR) showed that Kif2 and Lsamp are expressed hours following fear conditioning but minutes after unpaired training. Hpcal4 is induced by paired stimulation only 5 h after the training. These results show that fear conditioning induces a unique temporal activation of molecular pathways involved in regulating synaptic transmission and axonal morphology in LA, which is different from non-associative stimulation.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/genética , Transducción de Señal/genética , Estimulación Acústica , Amígdala del Cerebelo/anatomía & histología , Animales , Reacción de Prevención/fisiología , Moléculas de Adhesión Celular Neuronal/genética , Estimulación Eléctrica , Proteínas Ligadas a GPI , Cinesinas/genética , Masculino , Memoria/fisiología , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas del Tejido Nervioso/biosíntesis , Pruebas Neuropsicológicas , Ratas , Ratas Sprague-Dawley , Membranas Sinápticas/genética , Transmisión Sináptica/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Factores de Tiempo
5.
Neuroscience ; 155(3): 959-68, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18620025

RESUMEN

The lateral nucleus of the amygdala (LA) is a site of convergence for auditory (conditioned stimulus) and foot-shock (unconditioned stimulus) inputs during fear conditioning. The auditory pathways to LA are well characterized, but less is known about the pathways through which foot shock is transmitted. Anatomical tracing and physiological recording studies suggest that the posterior intralaminar thalamic nucleus, which projects to LA, receives both auditory and somatosensory inputs. In the present study we examined the expression of the immediate-early gene c-fos in the LA in rats in response to foot-shock stimulation. We then determined the effects of posterior intralaminar thalamic lesions on foot-shock-induced c-Fos expression in the LA. Foot-shock stimulation led to an increase in the density of c-Fos-positive cells in all LA subnuclei in comparison to controls exposed to the conditioning box but not shocked. However, some differences among the dorsolateral, ventrolateral and ventromedial subnuclei were observed. The ventrolateral subnucleus showed a homogeneous activation throughout its antero-posterior extension. In contrast, only the rostral aspect of the ventromedial subnucleus and the central aspect of the dorsolateral subnucleus showed a significant increment in c-Fos expression. The density of c-Fos-labeled cells in all LA subnuclei was also increased in animals placed in the box in comparison to untreated animals. Unilateral electrolytic lesions of the posterior intralaminar thalamic nucleus and the medial division of the medial geniculate body reduced foot-shock-induced c-Fos activation in the LA ipsilateral to the lesion. The number of c-Fos labeled cells on the lesioned side was reduced to the levels observed in the animals exposed only to the box. These results indicate that the LA is involved in processing information about the foot-shock unconditioned stimulus and receives this kind of somatosensory information from the posterior intralaminar thalamic nucleus and the medial division of the medial geniculate body.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Condicionamiento Psicológico/fisiología , Electrochoque , Regulación de la Expresión Génica/efectos de la radiación , Núcleos Talámicos Posteriores/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Conducta Animal , Mapeo Encefálico , Recuento de Células/métodos , Pie/inervación , Lateralidad Funcional , Masculino , Vías Nerviosas/fisiología , Núcleos Talámicos Posteriores/lesiones , Proteínas Proto-Oncogénicas c-fos/genética , Ratas , Ratas Sprague-Dawley
6.
Neuroscience ; 150(1): 1-7, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17980493

RESUMEN

Using functional magnetic resonance imaging and an experimental paradigm of instructed fear, we observed a striking pattern of decreased activity in primary motor cortex with increased activity in dorsal basal ganglia during anticipation of aversive electrodermal stimulation in 42 healthy participants. We interpret this pattern of activity in motor neurocircuitry in response to cognitively-induced fear in relation to evolutionarily-conserved responses to threat that may be relevant to understanding normal and pathological fear in humans.


Asunto(s)
Mapeo Encefálico , Miedo/psicología , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Adulto , Amígdala del Cerebelo/irrigación sanguínea , Amígdala del Cerebelo/fisiología , Ganglios Basales/irrigación sanguínea , Ganglios Basales/fisiología , Femenino , Respuesta Galvánica de la Piel/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Corteza Motora/irrigación sanguínea , Vías Nerviosas/irrigación sanguínea , Oxígeno/sangre , Estimulación Luminosa/métodos
7.
Neuroscience ; 139(3): 821-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16515842

RESUMEN

Learning and memory depend on signaling molecules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the training stimuli were presented in a non-associative manner. Anatomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically implicated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nucleus of the amygdala. When ML-7 was applied without associative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the circuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Azepinas/administración & dosificación , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Inhibidores Enzimáticos/administración & dosificación , Miedo/fisiología , Inyecciones Intraventriculares , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Microinyecciones , Naftalenos/administración & dosificación , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos
8.
Neuroscience ; 136(1): 289-99, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16181741

RESUMEN

Glucocorticoids, released in high concentrations from the adrenal cortex during stressful experiences, bind to glucocorticoid receptors in nuclear and peri-nuclear sites in neuronal somata. Their classically known mode of action is to induce gene promoter receptors to alter gene transcription. Nuclear glucocorticoid receptors are particularly dense in brain regions crucial for memory, including memory of stressful experiences, such as the hippocampus and amygdala. While it has been proposed that glucocorticoids may also act via membrane bound receptors, the existence of the latter remains controversial. Using electron microscopy, we found glucocorticoid receptors localized to non-genomic sites in rat lateral amygdala, glia processes, presynaptic terminals, neuronal dendrites, and dendritic spines including spine organelles and postsynaptic membrane densities. The lateral nucleus of the amygdala is a region specifically implicated in the formation of memories for stressful experiences. These newly observed glucocorticoid receptor immunoreactive sites were in addition to glucocorticoid receptor immunoreactive signals observed using electron and confocal microscopy in lateral amygdala principal neuron and GABA neuron soma and nuclei, cellular domains traditionally associated with glucocorticoid immunoreactivity. In lateral amygdala, glucocorticoid receptors are thus also localized to non-nuclear-membrane translocation sites, particularly dendritic spines, where they show an affinity for postsynaptic membrane densities, and may have a specialized role in modulating synaptic transmission plasticity related to fear and emotional memory.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Receptores de Glucocorticoides/metabolismo , Membranas Sinápticas/metabolismo , Amígdala del Cerebelo/ultraestructura , Animales , Técnicas Inmunológicas , Masculino , Microscopía Electrónica , Ratas , Ratas Sprague-Dawley , Membranas Sinápticas/ultraestructura , Distribución Tisular
9.
Neuroscience ; 133(2): 561-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15878802

RESUMEN

The amygdala is critical for acquiring and expressing conditioned fear responses elicited by sensory stimuli that predict future punishment, but there is conflicting evidence about whether the amygdala is necessary for perceiving the aversive qualities of painful or noxious stimuli that inflict primary punishment. To investigate this question, rats were fear conditioned by pairing a sequence of auditory pips (the conditioned stimulus, or CS) with a brief train of shocks to one eyelid (the unconditioned stimulus, or US). Conditioned responding to the CS was assessed by measuring freezing responses during a test session conducted 24 h after training, and unconditioned responding to the US was assessed by measuring head movements evoked by the eyelid shocks during training. We found that pre-training electrolytic lesions of the amygdala's lateral (LA) nucleus blocked acquisition of conditioned freezing to the CS, and also significantly attenuated unconditioned head movements evoked by the US. Similarly, bilateral inactivation of the amygdala with the GABA-A agonist muscimol impaired acquisition of CS-evoked freezing, and also attenuated US-evoked responses during training. However, when amygdala synaptic plasticity was blocked by infusion of the NR2B receptor antagonist ifenprodil, acquisition of conditioned freezing was impaired but shock reactivity was unaffected. These findings indicate that neural activity within the amygdala is important for both predicting and perceiving the aversive qualities of noxious stimuli, and that synaptic plasticity within LA is the mechanism by which the CS becomes associated with the US during fear conditioning.


Asunto(s)
Amígdala del Cerebelo/fisiología , Reacción de Prevención/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Estimulación Acústica/métodos , Amígdala del Cerebelo/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/efectos de la radiación , Conducta Animal , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/efectos de la radiación , Relación Dosis-Respuesta a Droga , Electrochoque/efectos adversos , Lateralidad Funcional , Agonistas del GABA/farmacología , Inhibición Psicológica , Masculino , Muscimol/farmacología , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Reflejo de Sobresalto/efectos de la radiación
10.
Neuroscience ; 130(1): 17-24, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15561421

RESUMEN

We sought to determine whether contextual fear conditioning, a hippocampal-dependent task, would affect neurogenesis in the dentate gyrus of the hippocampus, and if so, to identify which aspect of the training experience accounts for the change. The immediate shock deficit paradigm was used, together with bromodeoxyuridine immunohistochemistry, to isolate the contribution of different aspects of contextual fear conditioning to neurogenesis. Contextual fear learning caused a 33% decrease in the number of proliferating cells that was anatomically restricted to the dentate gyrus with no change in cell survival or differentiation. This attenuation was not related to exposure to the conditioned stimulus alone, the footshock unconditioned stimulus alone, or the expression of fear to the context after training. Instead, the effect of context conditioning on cell proliferation appears to be specifically due to the formation of an association between the context and shock during training, an amygdala dependent function.


Asunto(s)
Proliferación Celular , Condicionamiento Clásico/fisiología , Miedo/fisiología , Hipocampo/citología , Neuronas/fisiología , Animales , Astrocitos/fisiología , Conducta Animal , Bromodesoxiuridina/metabolismo , Recuento de Células/métodos , Corticosterona/sangre , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Sprague-Dawley , Restricción Física/fisiología
11.
Neuroscience ; 129(2): 267-72, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15501585

RESUMEN

Consolidation is a process through which labile memories are made persistent [Science 287 (2000) 248]; [Annu Rev Psychol 55 (2004) 51]. When retrieved, a consolidated memory is rendered labile again and undergoes reconsolidation [Learn Mem 7 (2000) 73]; [Trends Neurosci 26 (2003) 65]). Reconsolidation thus offers the opportunity to manipulate memory after it is formed, and may therefore provide a means of treating intrusive memories associated with post-traumatic stress disorder (PTSD). Reconsolidation is most usually studied using protein synthesis inhibitors, which is not practical in humans. However, the beta adrenergic receptor antagonist propranolol impairs consolidation of declarative memory in humans [Science 287 (2000) 248]; [Nature 371 (1994) 702] and consolidation and reconsolidation of inhibitory avoidance learning in rats [Brain Res 368 (1986) 125]; [J Neurosci 19 (1999) 6623]. Here, we show that systemic or intra-amygdala infused propranolol blocks reconsolidation but not consolidation. If the effects on reconsolidation are verified in humans, the results would suggest the possibility that propranolol after memory retrieval might be an effective way of treatment of intrusive memories in PTSD. That the systemic effects of propranolol on reconsolidation are achieved via an action in the amygdala is especially important in light of the fact that PTSD involves alterations in the amygdala [Arch Gen Psychiatry 53 (1996) 380].


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Miedo/psicología , Norepinefrina/antagonistas & inhibidores , Estimulación Acústica , Antagonistas Adrenérgicos beta/administración & dosificación , Antagonistas Adrenérgicos beta/farmacología , Amígdala del Cerebelo/anatomía & histología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Señales (Psicología) , Inyecciones , Inyecciones Intraperitoneales , Masculino , Propranolol/administración & dosificación , Propranolol/farmacología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
12.
Neuroscience ; 128(1): 7-14, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15450349

RESUMEN

The bed nucleus of the stria terminalis (BNST) is believed to be a critical relay between the central nucleus of the amygdala (CE) and the paraventricular nucleus of the hypothalamus in the control of hypothalamic-pituitary-adrenal (HPA) responses elicited by conditioned fear stimuli. If correct, lesions of CE or BNST should block expression of HPA responses elicited by either a specific conditioned fear cue or a conditioned context. To test this, rats were subjected to cued (tone) or contextual classical fear conditioning. Two days later, electrolytic or sham lesions were placed in CE or BNST. After 5 days, the rats were tested for both behavioral (freezing) and neuroendocrine (corticosterone) responses to tone or contextual cues. CE lesions attenuated conditioned freezing and corticosterone responses to both tone and context. In contrast, BNST lesions attenuated these responses to contextual but not tone stimuli. These results suggest CE is indeed an essential output of the amygdala for the expression of conditioned fear responses, including HPA responses, regardless of the nature of the conditioned stimulus. However, because lesions of BNST only affected behavioral and endocrine responses to contextual stimuli, the results do not support the notion that BNST is critical for HPA responses elicited by conditioned fear stimuli in general. Instead, the BNST may be essential specifically for contextual conditioned fear responses, including both behavioral and HPA responses, by virtue of its connections with the hippocampus, a structure essential to contextual conditioning. The results are also not consistent with the hypothesis that BNST is only involved in unconditioned aspects of fear and anxiety.


Asunto(s)
Corticosterona/sangre , Miedo/fisiología , Vías Nerviosas/patología , Núcleos Septales/patología , Animales , Conducta Animal/fisiología , Condicionamiento Clásico , Sistema Hipotálamo-Hipofisario/fisiología , Masculino , Sistema Hipófiso-Suprarrenal/fisiología , Ratas , Ratas Sprague-Dawley
13.
Neuroscience ; 125(2): 305-15, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15062974

RESUMEN

Plasticity in the lateral nucleus of the amygdala is thought to be critical for the acquisition of Pavlovian fear conditioning. The pathways that transmit auditory conditioned stimulus information originate in auditory processing regions of the thalamus and cortex, but the pathways mediating transmission of unconditioned stimuli to the amygdala are poorly understood. Recent studies suggest that somatosensory (footshock) unconditioned stimulus information is also relayed in parallel to the lateral nucleus of the amygdala from the thalamus (the posterior intralaminar thalamic complex, PIT) and the cortex (parietal insular cortex). In the present study we reexamined this issue. Our results showed that bilateral electrolytic lesions of the PIT alone blocked fear conditioning, whereas bilateral excitotoxic PIT lesions had no effect. These electrolytic PIT lesions did not affect fear conditioning using a loud noise as unconditioned stimulus, defining the effects of PIT lesions as a disruption of somatosensory as opposed to auditory processing. Finally, we performed combined bilateral excitotoxic lesions of the PIT nuclei and electrolytic lesions of the parietal insular cortex. These, like excitotoxic lesions of PIT alone, had no effect on the acquisition of fear conditioning. Thus, somatosensory regions of the thalamus and cortex may well be important routes of unconditioned stimulus transmission to the amygdala in fear conditioning, but information about the unconditioned somatosensory stimulus is also transmitted from other sources that send fibers through, but do not form essential synapses in, the thalamus en route to the amygdala.


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Núcleos Talámicos Intralaminares/fisiología , Lóbulo Parietal/fisiología , Análisis de Varianza , Animales , Conducta Animal , Encefalopatías/fisiopatología , Condicionamiento Clásico/efectos de los fármacos , Electrólisis/métodos , Electrochoque/efectos adversos , Inmovilización , Núcleos Talámicos Intralaminares/lesiones , Masculino , Redes Neurales de la Computación , Neurotoxinas/toxicidad , Lóbulo Parietal/lesiones , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
15.
Neuroscience ; 106(3): 613-20, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11591461

RESUMEN

Projections to the amygdala from various cortical and subcortical areas terminate in different nuclei. In the present study we examined long-term potentiation of synaptic transmission in the lateral or the basal amygdaloid nuclei by theta burst stimulation of thalamic vs. cortical sensory projections in the anesthetized rat. Although both the medial geniculate nucleus and the dorsal perirhinal cortex have direct projections to lateral nucleus, only the thalamic stimulation induced long-term potentiation of field potentials recorded in the lateral nucleus. In contrast, cortical (ventral perirhinal cortex) but not thalamic stimulation induced long-term potentiation in the basal nucleus. Since the thalamic pathway is believed to process simple/unimodal stimulus features, and the perirhinal cortex complex/polymodal sensory representations, the dissociation of long-term potentiation in lateral and basal nuclei suggests that the basal nucleus may serve as an amygdaloid sensory interface for complex stimulus information similar to the role of the lateral nucleus in relation to relatively simple representations. Thus plasticity of simple and complex representations may involve different amygdala inputs and circuits.


Asunto(s)
Amígdala del Cerebelo/fisiología , Cuerpos Geniculados/fisiología , Potenciación a Largo Plazo/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Giro Parahipocampal/fisiología , Transmisión Sináptica/fisiología , Amígdala del Cerebelo/citología , Animales , Estimulación Eléctrica , Cuerpos Geniculados/citología , Masculino , Potenciales de la Membrana/fisiología , Vías Nerviosas/citología , Giro Parahipocampal/citología , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología
16.
Learn Mem ; 8(5): 229-42, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11584069

RESUMEN

Fear conditioning is a form of associative learning in which subjects come to express defense responses to a neutral conditioned stimulus (CS) that is paired with an aversive unconditioned stimulus (US). Considerable evidence suggests that critical neural changes mediating the CS-US association occur in the lateral nucleus of the amygdala (LA). Further, recent studies show that associative long-term potentiation (LTP) occurs in pathways that transmit the CS to LA, and that drugs that interfere with this LTP also disrupt behavioral fear conditioning when infused into the LA, suggesting that associative LTP in LA might be a mechanism for storing memories of the CS-US association. Here, we develop a detailed cellular hypothesis to explain how neural responses to the CS and US in LA could induce LTP-like changes that store memories during fear conditioning. Specifically, we propose that the CS evokes EPSPs at sensory input synapses onto LA pyramidal neurons, and that the US strongly depolarizes these same LA neurons. This depolarization, in turn, causes calcium influx through NMDA receptors (NMDARs) and also causes the LA neuron to fire action potentials. The action potentials then back-propagate into the dendrites, where they collide with CS-evoked EPSPs, resulting in calcium entry through voltage-gated calcium channels (VGCCs). Although calcium entry through NMDARs is sufficient to induce synaptic changes that support short-term fear memory, calcium entry through both NMDARs and VGCCs is required to initiate the molecular processes that consolidate synaptic changes into a long-term memory.


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Psicológico , Miedo/psicología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Aprendizaje por Asociación , Humanos
17.
Trends Neurosci ; 24(9): 540-6, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11506888

RESUMEN

Pavlovian fear conditioning has emerged as a leading behavioral paradigm for studying the neurobiological basis of learning and memory. Although considerable progress has been made in understanding the neural substrates of fear conditioning at the systems level, until recently little has been learned about the underlying cellular and molecular mechanisms. The success of systems-level work aimed at defining the neuroanatomical pathways underlying fear conditioning, combined with the knowledge accumulated by studies of long-term potentiation (LTP), has recently given way to new insights into the cellular and molecular mechanisms that underlie acquisition and consolidation of fear memories. Collectively, these findings suggest that fear memory consolidation in the amygdala shares essential biochemical features with LTP, and hold promise for understanding the relationship between memory consolidation and synaptic plasticity in the mammalian brain.


Asunto(s)
Condicionamiento Psicológico/fisiología , Miedo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neuronas/fisiología , Animales , Humanos
18.
J Neurosci ; 21(17): 6889-96, 2001 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-11517276

RESUMEN

The lateral nucleus of the amygdala (LA) is an essential component of the neural circuitry underlying Pavlovian fear conditioning. Although blockade of NMDA receptors in LA and adjacent areas before training disrupts the acquisition of fear conditioning, blockade before testing also often disrupts the expression of fear responses. With this pattern of results, it is not possible to distinguish a contribution of NMDA receptors to plasticity from a role in synaptic transmission. In past studies, NMDA blockade has been achieved using the antagonist d,l-2-amino-5-phosphovalerate, which blocks the entire heteromeric receptor complex. The present experiments examined the effects of selective blockade of the NR2B subunit of the NMDA receptor in LA using the selective antagonist ifenprodil. Systemic injections of ifenprodil before training led to a dose-dependent impairment in the acquisition of auditory and contextual fear conditioning, whereas injections before testing had no effect. Intra-amygdala infusions of ifenprodil mirrored these results and, in addition, showed that the effects are attributable to a disruption of fear learning rather than a disruption of memory consolidation. NMDA receptors in LA are thus involved in fear conditioning, and the NR2B subunit appears to make unique contributions to the underlying plasticity.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Condicionamiento Clásico/fisiología , Miedo/fisiología , Aprendizaje/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Estimulación Acústica , Amígdala del Cerebelo/efectos de los fármacos , Animales , Condicionamiento Clásico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Electrochoque , Antagonistas de Aminoácidos Excitadores/farmacología , Miedo/efectos de los fármacos , Inyecciones Intraperitoneales , Aprendizaje/efectos de los fármacos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Microinyecciones , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Retención en Psicología/efectos de los fármacos
19.
Biol Psychol ; 58(1): 1-23, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11473792

RESUMEN

The present study applied a visual half field paradigm with emotional facial expressions in patients with selective unilateral amygdalo-hippocampectomy (AHE) to elucidate the contributions of the left and right medial temporal lobe and amygdala to emotional learning. Electrodermal indicators of aversive learning were studied in 14 left AHE and 12 right AHE patients, as well as 13 controls matched in sex and age. In a differential conditioning paradigm with negative (CS+) and positive (CS-) facial expressions, CS+ were associated with an aversive vocalization (US, 95 dB, 3 s). During extinction, stimuli were presented laterally and preattentively using backward masking. Appropriate CS durations yielding preattentive presentation were individually determined prior to conditioning. In contrast to controls, both left and right AHE patients failed to show an autonomic conditioning effect following left visual field presentations of masked negative CS+ during extinction. AHE patients also showed no clear differential acquisition. Moreover, right AHE patients poorly recognised that negative valence was an affiliating dimension of the CS-US compound.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Reacción de Prevención/fisiología , Dominancia Cerebral/fisiología , Hipocampo/fisiopatología , Adulto , Nivel de Alerta/fisiología , Aprendizaje por Asociación/fisiología , Atención/fisiología , Mapeo Encefálico , Condicionamiento Clásico/fisiología , Aprendizaje Discriminativo/fisiología , Emociones/fisiología , Epilepsia del Lóbulo Temporal/cirugía , Expresión Facial , Femenino , Humanos , Masculino , Recuerdo Mental/fisiología , Complicaciones Posoperatorias/fisiopatología , Psicocirugía , Lóbulo Temporal/fisiopatología , Campos Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...