Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 153: 110979, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32275536

RESUMEN

Within Southern California, east Pacific green sea turtles (Chelonia mydas) forage year-round, taking advantage of diverse food resources, including seagrass, marine algae, and invertebrates. Assessing persistent organic pollutants (POP) in green turtle aggregations in the Seal Beach National Wildlife Refuge (SBNWR, n = 17) and San Diego Bay (SDB, n = 25) can help quantify contamination risks for these populations. Blood plasma was analyzed for polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). PCBs and body size explained much of the separation of turtles by foraging aggregation in a principal component analysis. Turtles from SDB had significantly (p < 0.001) higher total PCBs than SBNWR turtles. Most PCBs detected in turtles were non-dioxin-like PCB congeners (153, 138, 99) that are associated with neurotoxicity. Recaptured turtles' POP levels changed significantly over time indicating significant variation in POP levels through time and space, even among adjacent foraging locations.


Asunto(s)
Monitoreo del Ambiente , Tortugas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , California , Ecosistema , Compuestos Orgánicos/metabolismo , Bifenilos Policlorados/metabolismo
2.
Chemosphere ; 223: 342-350, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30784740

RESUMEN

Foraging aggregations of east Pacific green sea turtles (Chelonia mydas) inhabit the Seal Beach National Wildlife Refuge (SBNWR) and San Diego Bay (SDB), two habitats in southern California, USA, located near urbanized areas. Both juvenile and adult green turtles forage in these areas and exhibit high site fidelity, which potentially exposes green turtles to anthropogenic contaminants. We assessed 21 trace metals (TM) bioaccumulated in green turtle scute and red blood cell (RBC) samples collected from SBNWR (n = 16 turtles) and SDB (n = 20 turtles) using acid digestion and inductively coupled plasma mass spectrometry. Principal component analyses of TM composition indicate that SBNWR and SDB turtles have location-specific contaminant signatures, characterized by differences in cadmium and selenium concentrations: SBNWR turtles had significantly more cadmium and selenium in RBC and more selenium in scute samples, than SDB turtles. Cadmium and selenium concentrations in RBC had a strong positive relationship, regardless of location. SBNWR turtles had higher selenium in RBCs than previously measured in other green turtle populations globally. Due to different retention times in blood vs. scute, these results suggest that SBNWR turtles have high long- and short-term selenium exposure. Turtles from SBNWR and SDB had higher trace metal concentrations than documented in green turtle populations that inhabit non-urbanized areas, supporting the hypothesis that coastal cities can increase trace metal exposure to local green turtles. Our study finds evidence that green turtle TM concentrations can differ between urbanized habitats and that long-term monitoring of these green turtles may be necessary.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Estuarios , Oligoelementos/análisis , Tortugas/metabolismo , Animales , Cadmio/análisis , Cadmio/sangre , California , Eritrocitos/química , Selenio/análisis , Selenio/sangre , Tortugas/sangre , Urbanización , Contaminantes Químicos del Agua
3.
PLoS One ; 10(10): e0138861, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26465620

RESUMEN

Determining sex ratios of endangered populations is important for wildlife management, particularly species subject to sex-specific threats or that exhibit temperature-dependent sex determination. Sea turtle sex is determined by incubation temperature and individuals lack external sex-based traits until sexual maturity. Previous research utilized serum/plasma testosterone radioimmunoassays (RIA) to determine sex in immature/juvenile sea turtles. However, there has been a growing application of enzyme-linked immunosorbent assay (ELISA) for wildlife endocrinology studies, but no study on sea turtles has compared the results of ELISA and RIA. This study provides the first sex ratio for a threatened East Pacific green sea turtle (Chelonia mydas) foraging aggregation, a critical step for future management of this species. Here, we validate a testosterone ELISA and compare results between RIA and ELISA of duplicate samples. The ELISA demonstrated excellent correspondence with the RIA for providing testosterone concentrations for sex determination. Neither assay proved reliable for predicting the sex of reproductively active females with increased testosterone production. We then applied ELISA to examine the sex ratio of 69 green turtles foraging in San Diego Bay, California. Of 45 immature turtles sampled, sex could not be determined for three turtles because testosterone concentrations fell between the ranges for either sex (females: 4.1-113.1 pg/mL, males: 198.4-2,613.0 pg/mL) and these turtles were not subsequently recaptured to enable sex determination; using a Bayesian model to predict probabilities of turtle sex we predicted all three 'unknowns' were female (> 0.86). Additionally, the model assigned all turtles with their correct sex (if determined at recapture) with 100% accuracy. Results indicated a female bias (2.83F:1M) among all turtles in the aggregation; when focusing only on putative immature turtles the sex ratio was 3.5F:1M. With appropriate validation, ELISA sexing could be applied to other sea turtle species, and serve as a crucial conservation tool.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/veterinaria , Procesos de Determinación del Sexo/fisiología , Razón de Masculinidad , Testosterona/sangre , Tortugas/fisiología , Distribución Animal/fisiología , Animales , Teorema de Bayes , California , Especies en Peligro de Extinción , Ensayo de Inmunoadsorción Enzimática/normas , Femenino , Masculino , Radioinmunoensayo , Sensibilidad y Especificidad
4.
J Hered ; 103(6): 806-20, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23045611

RESUMEN

Management of the critically endangered hawksbill turtle in the Wider Caribbean (WC) has been hampered by knowledge gaps regarding stock structure. We carried out a comprehensive stock structure re-assessment of 11 WC hawksbill rookeries using longer mtDNA sequences, larger sample sizes (N = 647), and additional rookeries compared to previous surveys. Additional variation detected by 740 bp sequences between populations allowed us to differentiate populations such as Barbados-Windward and Guadeloupe (F (st) = 0.683, P < 0.05) that appeared genetically indistinguishable based on shorter 380 bp sequences. POWSIM analysis showed that longer sequences improved power to detect population structure and that when N < 30, increasing the variation detected was as effective in increasing power as increasing sample size. Geographic patterns of genetic variation suggest a model of periodic long-distance colonization coupled with region-wide dispersal and subsequent secondary contact within the WC. Mismatch analysis results for individual clades suggest a general population expansion in the WC following a historic bottleneck about 100 000-300 000 years ago. We estimated an effective female population size (N (ef)) of 6000-9000 for the WC, similar to the current estimated numbers of breeding females, highlighting the importance of these regional rookeries to maintaining genetic diversity in hawksbills. Our results provide a basis for standardizing future work to 740 bp sequence reads and establish a more complete baseline for determining stock boundaries in this migratory marine species. Finally, our findings illustrate the value of maintaining an archive of specimens for re-analysis as new markers become available.


Asunto(s)
ADN Mitocondrial , Variación Genética , Genética de Población , Tortugas/genética , Animales , Barbados , Región del Caribe , Especies en Peligro de Extinción , Femenino , Guadalupe , Haplotipos , Modelos Genéticos , Filogenia , Filogeografía , Polimorfismo Genético , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...