Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5354, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097165

RESUMEN

Interlayer excitons (IXs) in MoSe2-WSe2 heterobilayers have generated interest as highly tunable light emitters in transition metal dichalcogenide (TMD) heterostructures. Previous reports of spectrally narrow (<1 meV) photoluminescence (PL) emission lines at low temperature have been attributed to IXs localized by the moiré potential between the TMD layers. We show that spectrally narrow IX PL lines are present even when the moiré potential is suppressed by inserting a bilayer hexagonal boron nitride (hBN) spacer between the TMD layers. We compare the doping, electric field, magnetic field, and temperature dependence of IXs in a directly contacted MoSe2-WSe2 region to those in a region separated by bilayer hBN. The doping, electric field, and temperature dependence of the narrow IX lines are similar for both regions, but their excitonic g-factors have opposite signs, indicating that the origin of narrow IX PL is not the moiré potential.

2.
Nano Lett ; 22(16): 6599-6605, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35969812

RESUMEN

Controlling the flow of charge neutral interlayer exciton (IX) quasiparticles can potentially lead to low loss excitonic circuits. Here, we report unidirectional transport of IXs along nanoscale electrostatically defined channels in an MoSe2-WSe2 heterostructure. These results are enabled by a lithographically defined triangular etch in a graphene gate to create a potential energy "slide". By performing spatially and temporally resolved photoluminescence measurements, we measure smoothly varying IX energy along the structure and high speed exciton flow with a drift velocity up to 2 × 106 cm/s, an order of magnitude larger than previous experiments. Furthermore, exciton flow can be controlled by saturating exciton population in the channel using a second laser pulse, demonstrating an optically gated excitonic transistor. Our work paves the way toward low loss excitonic circuits, the study of bosonic transport in one-dimensional channels, and custom potential energy landscapes for excitons in van der Waals heterostructures.

3.
Nano Lett ; 21(13): 5641-5647, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34164985

RESUMEN

For quantum technologies based on single excitons and spins, the deterministic placement and control of a single exciton is a longstanding goal. MoSe2-WSe2 heterostructures host spatially indirect interlayer excitons (IXs) that exhibit highly tunable energies and unique spin-valley physics, making them promising candidates for quantum information processing. Previous IX trapping approaches involving moiré superlattices and nanopillars do not meet the quantum technology requirements of deterministic placement and energy tunability. Here, we use a nanopatterned graphene gate to create a sharply varying electric field in close proximity to a MoSe2-WSe2 heterostructure. The dipole interaction between the IX and the electric field creates an ∼20 nm trap. The trapped IXs show the predicted electric-field-dependent energy, saturation at low excitation power, and increased lifetime, all signatures of strong spatial confinement. The demonstrated architecture is a crucial step toward the deterministic trapping of single IXs, which has broad applications to scalable quantum technologies.

4.
Nat Commun ; 10(1): 3264, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332203

RESUMEN

A plasmonic modulator is a device that controls the amplitude or phase of propagating plasmons. In a pure plasmonic modulator, the presence or absence of a plasmonic pump wave controls the amplitude of a plasmonic probe wave through a channel. This control has to be mediated by an interaction between disparate plasmonic waves, typically requiring the integration of a nonlinear material. In this work, we demonstrate a 2D semiconductor nonlinear plasmonic modulator based on a WSe2 monolayer integrated on top of a lithographically defined metallic waveguide. We utilize the strong interaction between the surface plasmon polaritons (SPPs) and excitons in the WSe2 to give a 73 % change in transmission through the device. We demonstrate control of the propagating SPPs using both optical and SPP pumps, realizing a 2D semiconductor nonlinear plasmonic modulator, with an ultrafast response time of 290 fs.

5.
Phys Rev Lett ; 121(3): 037702, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085814

RESUMEN

In minimally twisted bilayer graphene, a moiré pattern consisting of AB and BA stacking regions separated by domain walls forms. These domain walls are predicted to support counterpropogating topologically protected helical (TPH) edge states when the AB and BA regions are gapped. We fabricate designer moiré crystals with wavelengths longer than 50 nm and demonstrate the emergence of TPH states on the domain wall network by scanning tunneling spectroscopy measurements. We observe a double-line profile of the TPH states on the domain walls, only occurring when the AB and BA regions are gapped. Our results demonstrate a practical and flexible method for TPH state network construction.

6.
Sci Rep ; 7(1): 7611, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790318

RESUMEN

The electronic band structure of twisted bilayer graphene develops van Hove singularities whose energy depends on the twist angle between the two layers. Using Raman spectroscopy, we monitor the evolution of the electronic band structure upon doping using the G peak area which is enhanced when the laser photon energy is resonant with the energy separation of the van Hove singularities. Upon charge doping, the Raman G peak area initially increases for twist angles larger than a critical angle and decreases for smaller angles. To explain this behavior with twist angle, the energy separation of the van Hove singularities must decrease with increasing charge density demonstrating the ability to modify the electronic and optical properties of twisted bilayer graphene with doping.

7.
Proc Natl Acad Sci U S A ; 114(13): 3364-3369, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28292902

RESUMEN

According to electronic structure theory, bilayer graphene is expected to have anomalous electronic properties when it has long-period moiré patterns produced by small misalignments between its individual layer honeycomb lattices. We have realized bilayer graphene moiré crystals with accurately controlled twist angles smaller than 1° and studied their properties using scanning probe microscopy and electron transport. We observe conductivity minima at charge neutrality, satellite gaps that appear at anomalous carrier densities for twist angles smaller than 1°, and tunneling densities-of-states that are strongly dependent on carrier density. These features are robust up to large transverse electric fields. In perpendicular magnetic fields, we observe the emergence of a Hofstadter butterfly in the energy spectrum, with fourfold degenerate Landau levels, and broken symmetry quantum Hall states at filling factors ±1, 2, 3. These observations demonstrate that at small twist angles, the electronic properties of bilayer graphene moiré crystals are strongly altered by electron-electron interactions.

8.
Nat Commun ; 7: 13168, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762272

RESUMEN

Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.

10.
Nano Lett ; 16(3): 1989-95, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26859527

RESUMEN

We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.

11.
Phys Rev Lett ; 115(13): 136803, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26451575

RESUMEN

We report scanning tunneling microscopy and scanning tunneling spectroscopy (STS) measurements of monolayer and bilayer WSe_{2}. We measure a band gap of 2.21±0.08 eV in monolayer WSe_{2}, which is much larger than the energy of the photoluminescence peak, indicating a large excitonic binding energy. We additionally observe significant electronic scattering arising from atomic-scale defects. Using Fourier transform STS, we map the energy versus momentum dispersion relations for monolayer and bilayer WSe_{2}. Further, by tracking allowed and forbidden scattering channels as a function of energy we infer the spin texture of both the conduction and valence bands. We observe a large spin-splitting of the valence band due to strong spin-orbit coupling, and additionally observe spin-valley-layer coupling in the conduction band of bilayer WSe_{2}.

12.
Nano Lett ; 15(3): 1925-9, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25665012

RESUMEN

Semiconducting transition metal dichalchogenides (TMDs) are a family of van der Waals bonded materials that have recently received interest as alternative substrates to hexagonal boron nitride (hBN) for graphene, as well as for components in novel graphene-based device heterostructures. We elucidate the local structural and electronic properties of graphene on TMD heterostructures through scanning tunneling microscopy and spectroscopy measurements. We find that crystalline defects intrinsic to TMDs induce substantial electronic scattering and charge carrier density fluctuations in the graphene. These signatures of local disorder explain the significant degradation of graphene device mobilities using TMD substrates, particularly compared to similar graphene on hBN devices.


Asunto(s)
Grafito/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Elementos de Transición/química , Conductividad Eléctrica , Transporte de Electrón , Ensayo de Materiales , Tamaño de la Partícula
13.
Science ; 345(6192): 31-2, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24994635
14.
Phys Rev Lett ; 112(18): 187401, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856720

RESUMEN

The role of many-body interactions is experimentally and theoretically investigated near the saddle point absorption peak of graphene. The time and energy-resolved differential optical transmission measurements reveal the dominant role played by electron-acoustic phonon coupling in band structure renormalization. Using a Born approximation for electron-phonon coupling and experimental estimates of the dynamic lattice temperature, we compute the differential transmission line shape. Comparing the numerical and experimental line shapes, we deduce the effective acoustic deformation potential to be Deff(ac)≃5 eV. This value is in accord with recent theoretical predictions but differs from those extracted using electrical transport measurements.

15.
Nat Mater ; 13(8): 786-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24776537

RESUMEN

The crystal structure of a material plays an important role in determining its electronic properties. Changing from one crystal structure to another involves a phase transition that is usually controlled by a state variable such as temperature or pressure. In the case of trilayer graphene, there are two common stacking configurations (Bernal and rhombohedral) that exhibit very different electronic properties. In graphene flakes with both stacking configurations, the region between them consists of a localized strain soliton where the carbon atoms of one graphene layer shift by the carbon-carbon bond distance. Here we show the ability to move this strain soliton with a perpendicular electric field and hence control the stacking configuration of trilayer graphene with only an external voltage. Moreover, we find that the free-energy difference between the two stacking configurations scales quadratically with electric field, and thus rhombohedral stacking is favoured as the electric field increases. This ability to control the stacking order in graphene opens the way to new devices that combine structural and electrical properties.

16.
Phys Rev Lett ; 108(1): 016801, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22304277

RESUMEN

Using scanning tunneling microscopy and spectroscopy, we have studied the local density of states (LDOS) of graphene over step edges in boron nitride. Long-wavelength oscillations in the LDOS are observed with maxima parallel to the step edge. Their wavelength and amplitude are controlled by the energy of the quasiparticles allowing a direct probe of the graphene dispersion relation. We also observe a faster decay of the LDOS oscillations away from the step edge than in conventional metals. This is due to the chiral nature of the Dirac fermions in graphene.

17.
Nat Mater ; 10(4): 282-5, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21317900

RESUMEN

Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low-density region at the Dirac point has been difficult because of disorder that leaves the graphene with local microscopic electron and hole puddles. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance. Here we use scanning tunnelling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moiré patterns. However, contrary to predictions, this conformation does not lead to a sizeable band gap because of the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared with those on silicon oxide. This leads to charge fluctuations that are as small as in suspended graphene, opening up Dirac point physics to more diverse experiments.

18.
Chemphyschem ; 11(9): 1833-5, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20169606
19.
Nano Lett ; 7(10): 2937-41, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17559287

RESUMEN

We performed scanning tunneling spectroscopy measurements on suspended single-walled carbon nanotubes with independently addressable source and drain electrodes in the Coulomb blockade regime. This three-terminal configuration allows the resistance to the source and drain electrodes to be individually measured, which we exploit to demonstrate that electrons were added to spin-degenerate states of the carbon nanotube. Unexpectedly, the Coulomb peaks also showed a strong spatial dependence. By performing simultaneous scanning tunneling spectroscopy and electrical transport measurements we show that the probed states are extended between the source and drain electrodes. This indicates that the observed spatial dependence reflects a modulation of the contact resistance.


Asunto(s)
Cristalización/métodos , Microscopía de Túnel de Rastreo/métodos , Modelos Químicos , Modelos Moleculares , Nanotecnología/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Simulación por Computador , Conductividad Eléctrica , Transporte de Electrón , Ensayo de Materiales , Tamaño de la Partícula , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...