Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10952, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740850

RESUMEN

It is recognized as a promising therapeutic strategy for cocaine use disorder to develop an efficient enzyme which can rapidly convert cocaine to physiologically inactive metabolites. We have designed and discovered a series of highly efficient cocaine hydrolases, including CocH5-Fc(M6) which is the currently known as the most efficient cocaine hydrolase with both the highest catalytic activity against (-)-cocaine and the longest biological half-life in rats. In the present study, we characterized the time courses of protein appearance, pH, structural integrity, and catalytic activity against cocaine in vitro and in vivo of a CocH5-Fc(M6) bulk drug substance produced in a bioreactor for its in vitro and in vivo stability after long-time storage under various temperatures (- 80, - 20, 4, 25, or 37 °C). Specifically, all the tested properties of the CocH5-Fc(M6) protein did not significantly change after the protein was stored at any of four temperatures including - 80, - 20, 4, and 25 °C for ~ 18 months. In comparison, at 37 °C, the protein was less stable, with a half-life of ~ 82 days for cocaine hydrolysis activity. Additionally, the in vivo studies further confirmed the linear elimination PK profile of CocH5-Fc(M6) with an elimination half-life of ~ 9 days. All the in vitro and in vivo data on the efficacy and stability of CocH5-Fc(M6) have consistently demonstrated that CocH5-Fc(M6) has the desired in vitro and in vivo stability as a promising therapeutic candidate for treatment of cocaine use disorder.


Asunto(s)
Cocaína , Estabilidad de Enzimas , Animales , Cocaína/metabolismo , Ratas , Hidrólisis , Concentración de Iones de Hidrógeno , Masculino , Semivida , Temperatura , Amidohidrolasas/metabolismo , Hidrolasas de Éster Carboxílico , Proteínas Recombinantes
2.
Sci Rep ; 14(1): 927, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195724

RESUMEN

Cocaine dependence is a serious world-wide public health problem without an FDA-approved pharmacotherapy. We recently designed and discovered a highly efficient long-acting cocaine hydrolase CocH5-Fc(M6). The present study examined the effectiveness and duration of CocH5-Fc(M6) in blocking interoceptive effects of cocaine by performing cocaine discrimination tests in rats, demonstrating that the duration of CocH5-Fc(M6) in blocking cocaine discrimination was dependent on cocaine dose and CocH5-Fc(M6) plasma concentration. Particularly, a dose of 3 mg/kg CocH5-Fc(M6) effectively attenuated discriminative stimulus effects of 10 mg/kg cocaine, cumulative doses of 10 and 32 mg/kg cocaine, and cumulative doses of 10, 32 and 56 mg/kg cocaine by ≥ 20% for 41, 19, and 10 days, and completely blocked the discriminative stimulus effects for 30, 13, and 5 days with corresponding threshold plasma CocH5-Fc(M6) concentrations of 15.9, 72.2, and 221 nM, respectively, under which blood cocaine concentration was negligible. Additionally, based on the data obtained, cocaine discrimination model is more sensitive than the locomotor activity to reveal cocaine effects and that CocH5-Fc(M6) itself has no long-term toxicity regarding behavioral activities such as lever pressing and food consumption in rats, further demonstrating that CocH5-Fc(M6) has the desired properties as a promising therapeutic candidate for prevenance of cocaine dependence.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Ratas , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Cocaína/farmacología , Hidrolasas de Éster Carboxílico , Locomoción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...