Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
NMR Biomed ; 37(5): e5101, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38303627

RESUMEN

1H-magnetic resonance spectroscopy (MRS) has the potential to improve the noninvasive diagnostic accuracy for paediatric brain tumours. However, studies analysing large, comprehensive, multicentre datasets are lacking, hindering translation to widespread clinical practice. Single-voxel MRS (point-resolved single-voxel spectroscopy sequence, 1.5 T: echo time [TE] 23-37 ms/135-144 ms, repetition time [TR] 1500 ms; 3 T: TE 37-41 ms/135-144 ms, TR 2000 ms) was performed from 2003 to 2012 during routine magnetic resonance imaging for a suspected brain tumour on 340 children from five hospitals with 464 spectra being available for analysis and 281 meeting quality control. Mean spectra were generated for 13 tumour types. Mann-Whitney U-tests and Kruskal-Wallis tests were used to compare mean metabolite concentrations. Receiver operator characteristic curves were used to determine the potential for individual metabolites to discriminate between specific tumour types. Principal component analysis followed by linear discriminant analysis was used to construct a classifier to discriminate the three main central nervous system tumour types in paediatrics. Mean concentrations of metabolites were shown to differ significantly between tumour types. Large variability existed across each tumour type, but individual metabolites were able to aid discrimination between some tumour types of importance. Complete metabolite profiles were found to be strongly characteristic of tumour type and, when combined with the machine learning methods, demonstrated a diagnostic accuracy of 93% for distinguishing between the three main tumour groups (medulloblastoma, pilocytic astrocytoma and ependymoma). The accuracy of this approach was similar even when data of marginal quality were included, greatly reducing the proportion of MRS excluded for poor quality. Children's brain tumours are strongly characterised by MRS metabolite profiles readily acquired during routine clinical practice, and this information can be used to support noninvasive diagnosis. This study provides both key evidence and an important resource for the future use of MRS in the diagnosis of children's brain tumours.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Humanos , Niño , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética
2.
J Clin Oncol ; 42(10): 1135-1145, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190578

RESUMEN

PURPOSE: Outcomes for children with relapsed and refractory high-risk neuroblastoma (RR-HRNB) remain dismal. The BEACON Neuroblastoma trial (EudraCT 2012-000072-42) evaluated three backbone chemotherapy regimens and the addition of the antiangiogenic agent bevacizumab (B). MATERIALS AND METHODS: Patients age 1-21 years with RR-HRNB with adequate organ function and performance status were randomly assigned in a 3 × 2 factorial design to temozolomide (T), irinotecan-temozolomide (IT), or topotecan-temozolomide (TTo) with or without B. The primary end point was best overall response (complete or partial) rate (ORR) during the first six courses, by RECIST or International Neuroblastoma Response Criteria for patients with measurable or evaluable disease, respectively. Safety, progression-free survival (PFS), and overall survival (OS) time were secondary end points. RESULTS: One hundred sixty patients with RR-HRNB were included. For B random assignment (n = 160), the ORR was 26% (95% CI, 17 to 37) with B and 18% (95% CI, 10 to 28) without B (risk ratio [RR], 1.52 [95% CI, 0.83 to 2.77]; P = .17). Adjusted hazard ratio for PFS and OS were 0.89 (95% CI, 0.63 to 1.27) and 1.01 (95% CI, 0.70 to 1.45), respectively. For irinotecan ([I]; n = 121) and topotecan (n = 60) random assignments, RRs for ORR were 0.94 and 1.22, respectively. A potential interaction between I and B was identified. For patients in the bevacizumab-irinotecan-temozolomide (BIT) arm, the ORR was 23% (95% CI, 10 to 42), and the 1-year PFS estimate was 0.67 (95% CI, 0.47 to 0.80). CONCLUSION: The addition of B met protocol-defined success criteria for ORR and appeared to improve PFS. Within this phase II trial, BIT showed signals of antitumor activity with acceptable tolerability. Future trials will confirm these results in the chemoimmunotherapy era.


Asunto(s)
Neuroblastoma , Topotecan , Niño , Humanos , Lactante , Preescolar , Adolescente , Adulto Joven , Adulto , Temozolomida/uso terapéutico , Irinotecán/uso terapéutico , Topotecan/efectos adversos , Bevacizumab/efectos adversos , Dacarbazina/efectos adversos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Neuroblastoma/patología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
3.
BMJ Open ; 12(10): e067140, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198471

RESUMEN

INTRODUCTION: Whole-body MRI (WB-MRI) is recommended by the National Institute of Clinical Excellence as the first-line imaging tool for diagnosis of multiple myeloma. Reporting WB-MRI scans requires expertise to interpret and can be challenging for radiologists who need to meet rapid turn-around requirements. Automated computational tools based on machine learning (ML) could assist the radiologist in terms of sensitivity and reading speed and would facilitate improved accuracy, productivity and cost-effectiveness. The MALIMAR study aims to develop and validate a ML algorithm to increase the diagnostic accuracy and reading speed of radiological interpretation of WB-MRI compared with standard methods. METHODS AND ANALYSIS: This phase II/III imaging trial will perform retrospective analysis of previously obtained clinical radiology MRI scans and scans from healthy volunteers obtained prospectively to implement training and validation of an ML algorithm. The study will comprise three project phases using approximately 633 scans to (1) train the ML algorithm to identify active disease, (2) clinically validate the ML algorithm and (3) determine change in disease status following treatment via a quantification of burden of disease in patients with myeloma. Phase 1 will primarily train the ML algorithm to detect active myeloma against an expert assessment ('reference standard'). Phase 2 will use the ML output in the setting of radiology reader study to assess the difference in sensitivity when using ML-assisted reading or human-alone reading. Phase 3 will assess the agreement between experienced readers (with and without ML) and the reference standard in scoring both overall burden of disease before and after treatment, and response. ETHICS AND DISSEMINATION: MALIMAR has ethical approval from South Central-Oxford C Research Ethics Committee (REC Reference: 17/SC/0630). IRAS Project ID: 233501. CPMS Portfolio adoption (CPMS ID: 36766). Participants gave informed consent to participate in the study before taking part. MALIMAR is funded by National Institute for Healthcare Research Efficacy and Mechanism Evaluation funding (NIHR EME Project ID: 16/68/34). Findings will be made available through peer-reviewed publications and conference dissemination. TRIAL REGISTRATION NUMBER: NCT03574454.


Asunto(s)
Aprendizaje Automático , Imagen por Resonancia Magnética , Mieloma Múltiple , Imagen de Cuerpo Entero , Clorobencenos , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Estudios Transversales , Pruebas Diagnósticas de Rutina , Humanos , Imagen por Resonancia Magnética/métodos , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/terapia , Estudios Retrospectivos , Sulfuros , Imagen de Cuerpo Entero/métodos
4.
Cancer Imaging ; 21(1): 67, 2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34924031

RESUMEN

BACKGROUND: Diffusion weighted imaging (DWI) with intravoxel incoherent motion (IVIM) modelling can inform on tissue perfusion without exogenous contrast administration. Dynamic-contrast-enhanced (DCE) MRI can also characterise tissue perfusion, but requires a bolus injection of a Gadolinium-based contrast agent. This study compares the use of DCE-MRI and IVIM-DWI methods in assessing response to anti-angiogenic treatment in patients with colorectal liver metastases in a cohort with confirmed treatment response. METHODS: This prospective imaging study enrolled 25 participants with colorectal liver metastases to receive Regorafenib treatment. A target metastasis > 2 cm in each patient was imaged before and at 15 days after treatment on a 1.5T MR scanner using slice-matched IVIM-DWI and DCE-MRI protocols. MRI data were motion-corrected and tumour volumes of interest drawn on b=900 s/mm2 diffusion-weighted images were transferred to DCE-MRI data for further analysis. The median value of four IVIM-DWI parameters [diffusion coefficient D (10-3 mm2/s), perfusion fraction f (ml/ml), pseudodiffusion coefficient D* (10-3 mm2/s), and their product fD* (mm2/s)] and three DCE-MRI parameters [volume transfer constant Ktrans (min-1), enhancement fraction EF (%), and their product KEF (min-1)] were recorded at each visit, before and after treatment. Changes in pre- and post-treatment measurements of all MR parameters were assessed using Wilcoxon signed-rank tests (P<0.05 was considered significant). DCE-MRI and IVIM-DWI parameter correlations were evaluated with Spearman rank tests. Functional MR parameters were also compared against Response Evaluation Criteria In Solid Tumours v.1.1 (RECIST) evaluations. RESULTS: Significant treatment-induced reductions of DCE-MRI parameters across the cohort were observed for EF (91.2 to 50.8%, P<0.001), KEF (0.095 to 0.045 min-1, P<0.001) and Ktrans (0.109 to 0.078 min-1, P=0.002). For IVIM-DWI, only D (a non-perfusion parameter) increased significantly post treatment (0.83 to 0.97 × 10-3 mm2/s, P<0.001), while perfusion-related parameters showed no change. No strong correlations were found between DCE-MRI and IVIM-DWI parameters. A moderate correlation was found, after treatment, between Ktrans and D* (r=0.60; P=0.002) and fD* (r=0.67; P<0.001). When compared to RECIST v.1.1 evaluations, KEF and D correctly identified most clinical responders, whilst non-responders were incorrectly identified. CONCLUSION: IVIM-DWI perfusion-related parameters showed limited sensitivity to the anti-angiogenic effects of Regorafenib treatment in colorectal liver metastases and showed low correlation with DCE-MRI parameters, despite profound and significant post-treatment reductions in DCE-MRI measurements. TRIAL REGISTRATION: NCT03010722 clinicaltrials.gov; registration date 6th January 2015.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Imagen por Resonancia Magnética , Estudios Prospectivos
5.
JTO Clin Res Rep ; 2(12): 100253, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34870249

RESUMEN

INTRODUCTION: We compared the magnetic resonance imaging total tumor volume (TTV) and median apparent diffusion coefficient (ADC) of malignant pleural mesothelioma (MPM) before and at 4 weeks after chemotherapy, to evaluate whether these are potential early markers of treatment response. METHODS: Diffusion-weighted magnetic resonance imaging was performed in 23 patients with MPM before and after 4 weeks of chemotherapy. The TTV was measured by semiautomatic segmentation (GrowCut) and transferred onto ADC maps to record the median ADC. Test-retest repeatability of TTV and ADC was evaluated in eight patients. TTV and median ADC changes were compared between responders and nonresponders, defined using modified Response Evaluation Criteria In Solid Tumors on computed tomography (CT) at 12 weeks after treatment. TTV and median ADC were also correlated with CT size measurement and disease survival. RESULTS: The test-retest 95% limits of agreement for TTV were -13.9% to 16.2% and for median ADC -1.2% to 3.3%. A significant increase in median ADC in responders was observed at 4 weeks after treatment (p = 0.02). Correlation was found between CT tumor size change at 12 weeks and median ADC changes at 4 weeks post-treatment (r = -0.560, p = 0.006). An increase in median ADC greater than 5.1% at 4 weeks has 100% sensitivity and 90% specificity for responders (area under the curve = 0.933, p < 0.001). There was also moderate correlation between median tumor ADC at baseline and overall survival (r = 0.45, p = 0.03). CONCLUSIONS: Diffusion-weighted magnetic resonance imaging measurements of TTV and median ADC in MPM have good measurement repeatability. Increase in ADC at 4 weeks post-treatment has the potential to be an early response biomarker.

6.
Eur Radiol Exp ; 5(1): 5, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33447887

RESUMEN

This review describes a cellular adaptive stress signalling roadmap connecting the 1H magnetic resonance spectroscopy (MRS) total choline peak at 3.2 ppm (tCho) to cancer response after targeted therapy (TT). Recent research on cell signalling, tCho metabolism, and TT of cancer has been retrospectively re-examined. Signalling research describes how the unfolded protein response (UPR), a major stress signalling network, transduces, regulates, and rewires the total membrane turnover in different cancer hallmarks after a TT stress. In particular, the UPR signalling maintains or increases total membrane turnover in all pro-survival hallmarks, whilst dramatically decreases turnover during apoptosis, a pro-death hallmark. Recent research depicts the TT-induced stress as a crucial event responsible for interrupting UPR pro-survival pathways, leading to an UPR-mediated cell death. The 1H-MRS tCho resonance represents the total mobile precursors and products during the enzymatic modification of phosphatidylcholine membrane abundance. The tCho profile represents a biomarker that noninvasively monitors TT-induced enzymatic changes in total membrane turnover in a wide variety of existing and new anticancer treatments targeting specific layers of the UPR signalling network. Our overview strongly suggests further evaluating and validating the 1H-MRS tCho peak as a powerful noninvasive imaging biomarker of cancer response in TT clinical trials.


Asunto(s)
Colina , Neoplasias , Humanos , Espectroscopía de Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Espectroscopía de Protones por Resonancia Magnética , Estudios Retrospectivos
7.
Br J Radiol ; 94(1119): 20191004, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507818

RESUMEN

OBJECTIVES: To investigate the feasibility of accurately quantifying the concentration of MRI contrast agent in flowing blood by measuring its T1 in a large vessel. Such measures are often used to obtain patient-specific arterial input functions for the accurate fitting of pharmacokinetic models to dynamic contrast enhanced MRI data. Flow is known to produce errors with this technique, but these have so far been poorly quantified and characterised in the context of pulsatile flow with a rapidly changing T1 as would be expected in vivo. METHODS: A phantom was developed which used a mechanical pump to pass fluid at physiologically relevant rates. Measurements of T1 were made using high temporal resolution gradient recalled sequences suitable for DCE-MRI of both constant and pulsatile flow. These measures were used to validate a virtual phantom that was then used to simulate the expected errors in the measurement of an AIF in vivo. RESULTS: The relationship between measured T1 values and flow velocity was found to be non-linear. The subsequent error in quantification of contrast agent concentration in a measured AIF was shown. CONCLUSIONS: The T1 measurement of flowing blood using standard DCE- MRI sequences are subject to large measurement errors which are non-linear in relation to flow velocity. ADVANCES IN KNOWLEDGE: This work qualitatively and quantitatively demonstrates the difficulties of accurately measuring the T1 of flowing blood using DCE-MRI over a wide range of physiologically realistic flow velocities and pulsatilities. Sources of error are identified and proposals made to reduce these.


Asunto(s)
Arterias/fisiología , Medios de Contraste , Hemodinámica/fisiología , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Estudios de Factibilidad , Fantasmas de Imagen , Reproducibilidad de los Resultados
8.
Front Oncol ; 10: 704, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457842

RESUMEN

Purpose: To characterize the voxel-wise uncertainties of Apparent Diffusion Coefficient (ADC) estimation from whole-body diffusion-weighted imaging (WBDWI). This enables the calculation of a new parametric map based on estimates of ADC and ADC uncertainty to improve WBDWI imaging standardization and interpretation: NoIse-Corrected Exponentially-weighted diffusion-weighted MRI (niceDWI). Methods: Three approaches to the joint modeling of voxel-wise ADC and ADC uncertainty (σADC) are evaluated: (i) direct weighted least squares (DWLS), (ii) iterative linear-weighted least-squares (IWLS), and (iii) smoothed IWLS (SIWLS). The statistical properties of these approaches in terms of ADC/σADC accuracy and precision is compared using Monte Carlo simulations. Our proposed post-processing methodology (niceDWI) is evaluated using an ice-water phantom, by comparing the contrast-to-noise ratio (CNR) with conventional exponentially-weighted DWI. We present the clinical feasibility of niceDWI in a pilot cohort of 16 patients with metastatic prostate cancer. Results: The statistical properties of ADC and σADC conformed closely to the theoretical predictions for DWLS, IWLS, and SIWLS fitting routines (a minor bias in parameter estimation is observed with DWLS). Ice-water phantom experiments demonstrated that a range of CNR could be generated using the niceDWI approach, and could improve CNR compared to conventional methods. We successfully implemented the niceDWI technique in our patient cohort, which visually improved the in-plane bias field compared with conventional WBDWI. Conclusions: Measurement of the statistical uncertainty in ADC estimation provides a practical way to standardize WBDWI across different scanners, by providing quantitative image signals that improve its reliability. Our proposed method can overcome inter-scanner and intra-scanner WBDWI signal variations that can confound image interpretation.

9.
Br J Cancer ; 122(6): 895-903, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31937921

RESUMEN

BACKGROUND: Monocarboxylate transporter 1 (MCT1) is a regulator of cell metabolism and a therapeutic target for cancer treatment. Understanding the changes in tumour function accompanying MCT1 inhibition will better characterise the anti-tumour effects of MCT1 inhibitors, potentially enabling the identification of pharmacodynamic biomarkers for the clinical development of these agents. METHODS: We assessed the impact of the MCT1 inhibitor AZD3965 on tumour metabolism and immune cell infiltration as key determinants of tumour biological function in the MCT1-dependent Raji B cell lymphoma model. RESULTS: Treatment of Raji xenograft-bearing severe combined immunodeficiency mice with AZD3965 led to inhibition of tumour growth paralleled with a decrease in tumour choline, as detected by non-invasive in vivo proton nuclear magnetic resonance spectroscopy. This effect was attributed to inhibition of phosphocholine de novo synthesis following decreased choline kinase α protein and messenger RNA expression that correlated with the AZD3965-induced build-up in intracellular lactate. These changes were concomitant with increased tumour immune cell infiltration involving dendritic and natural killer cells. CONCLUSIONS: Our data provide new insights into the metabolic and cellular changes that occur in the tumour microenvironment following MCT1 blockade, which may contribute to the anti-tumour activity of AZD3965 and could have potential as pharmacodynamic biomarkers of MCT1 inhibition.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/uso terapéutico , Pirimidinonas/uso terapéutico , Tiofenos/uso terapéutico , Animales , Técnicas de Cultivo de Célula , Línea Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Transportadores de Ácidos Monocarboxílicos/farmacología , Pirimidinonas/farmacología , Tiofenos/farmacología
10.
Autophagy ; 16(6): 1044-1060, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31517566

RESUMEN

Macroautophagy/autophagy can enable cancer cells to withstand cellular stress and maintain bioenergetic homeostasis by sequestering cellular components into newly formed double-membrane vesicles destined for lysosomal degradation, potentially affecting the efficacy of anti-cancer treatments. Using 13C-labeled choline and 13C-magnetic resonance spectroscopy and western blotting, we show increased de novo choline phospholipid (ChoPL) production and activation of PCYT1A (phosphate cytidylyltransferase 1, choline, alpha), the rate-limiting enzyme of phosphatidylcholine (PtdCho) synthesis, during autophagy. We also discovered that the loss of PCYT1A activity results in compromised autophagosome formation and maintenance in autophagic cells. Direct tracing of ChoPLs with fluorescence and immunogold labeling imaging revealed the incorporation of newly synthesized ChoPLs into autophagosomal membranes, endoplasmic reticulum (ER) and mitochondria during anticancer drug-induced autophagy. Significant increase in the colocalization of fluorescence signals from the newly synthesized ChoPLs and mCherry-MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) was also found on autophagosomes accumulating in cells treated with autophagy-modulating compounds. Interestingly, cells undergoing active autophagy had an altered ChoPL profile, with longer and more unsaturated fatty acid/alcohol chains detected. Our data suggest that de novo synthesis may be required to increase autophagosomal ChoPL content and alter its composition, together with replacing phospholipids consumed from other organelles during autophagosome formation and turnover. This addiction to de novo ChoPL synthesis and the critical role of PCYT1A may lead to development of agents targeting autophagy-induced drug resistance. In addition, fluorescence imaging of choline phospholipids could provide a useful way to visualize autophagosomes in cells and tissues. ABBREVIATIONS: AKT: AKT serine/threonine kinase; BAX: BCL2 associated X, apoptosis regulator; BECN1: beclin 1; ChoPL: choline phospholipid; CHKA: choline kinase alpha; CHPT1: choline phosphotransferase 1; CTCF: corrected total cell fluorescence; CTP: cytidine-5'-triphosphate; DCA: dichloroacetate; DMEM: dulbeccos modified Eagles medium; DMSO: dimethyl sulfoxide; EDTA: ethylenediaminetetraacetic acid; ER: endoplasmic reticulum; GDPD5: glycerophosphodiester phosphodiesterase domain containing 5; GFP: green fluorescent protein; GPC: glycerophosphorylcholine; HBSS: hanks balances salt solution; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LPCAT1: lysophosphatidylcholine acyltransferase 1; LysoPtdCho: lysophosphatidylcholine; MRS: magnetic resonance spectroscopy; MTORC1: mechanistic target of rapamycin kinase complex 1; PCho: phosphocholine; PCYT: choline phosphate cytidylyltransferase; PLA2: phospholipase A2; PLB: phospholipase B; PLC: phospholipase C; PLD: phospholipase D; PCYT1A: phosphate cytidylyltransferase 1, choline, alpha; PI3K: phosphoinositide-3-kinase; pMAFs: pancreatic mouse adult fibroblasts; PNPLA6: patatin like phospholipase domain containing 6; Pro-Cho: propargylcholine; Pro-ChoPLs: propargylcholine phospholipids; PtdCho: phosphatidylcholine; PtdEth: phosphatidylethanolamine; PtdIns3P: phosphatidylinositol-3-phosphate; RPS6: ribosomal protein S6; SCD: stearoyl-CoA desaturase; SEM: standard error of the mean; SM: sphingomyelin; SMPD1/SMase: sphingomyelin phosphodiesterase 1, acid lysosomal; SGMS: sphingomyelin synthase; WT: wild-type.


Asunto(s)
Antineoplásicos/farmacología , Autofagosomas/enzimología , Autofagosomas/metabolismo , Citidililtransferasa de Colina-Fosfato/metabolismo , Furanos/farmacología , Macroautofagia , Fosfatidilcolinas/biosíntesis , Piridinas/farmacología , Pirimidinas/farmacología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/ultraestructura , Células CHO , Línea Celular Tumoral , Colina/metabolismo , Citidililtransferasa de Colina-Fosfato/genética , Cricetulus , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/enzimología , Membranas Intracelulares/metabolismo , Macroautofagia/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metabolómica , Ratones , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
11.
Br J Cancer ; 122(1): 72-81, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819183

RESUMEN

BACKGROUND: BRAF inhibitors, such as vemurafenib, have shown efficacy in BRAF-mutant melanoma treatment but acquired-resistance invariably develops. Unveiling the potential vulnerabilities associated with vemurafenib resistance could provide rational strategies for combinatorial treatment. METHODS: This work investigates the metabolic characteristics and vulnerabilities of acquired resistance to vemurafenib in three generated BRAF-mutant human melanoma cell clones, analysing metabolic profiles, gene and protein expression in baseline and nutrient withdrawal conditions. Preclinical findings are correlated with gene expression analysis from publicly available clinical datasets. RESULTS: Two vemurafenib-resistant clones showed dependency on lipid metabolism and increased prostaglandin E2 synthesis and were more responsive to vemurafenib under EGFR inhibition, potentially implicating inflammatory lipid and EGFR signalling in ERK reactivation and vemurafenib resistance. The third resistant clone showed higher pyruvate-carboxylase (PC) activity indicating increased anaplerotic mitochondrial metabolism, concomitant with reduced GLUT-1, increased PC protein expression and survival advantage under nutrient-depleted conditions. Prostaglandin synthase (PTGES) expression was inversely correlated with melanoma patient survival. Increases in PC and PTGES gene expression were observed in some patients following progression on BRAF inhibitors. CONCLUSIONS: Altogether, our data highlight heterogeneity in metabolic adaptations during acquired resistance to vemurafenib in BRAF-mutant melanoma, potentially uncovering key clinically-relevant mechanisms for combinatorial therapeutic targeting.


Asunto(s)
Antineoplásicos/farmacología , Dinoprostona/biosíntesis , Resistencia a Antineoplásicos/efectos de los fármacos , Melanoma/metabolismo , Mitocondrias/metabolismo , Mutación , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/metabolismo , Vemurafenib/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Gefitinib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Melanoma/patología , Mitocondrias/efectos de los fármacos , Prostaglandina-E Sintasas/genética , Piruvato Carboxilasa/genética , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/patología
12.
J Med Genet ; 57(4): 226-236, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31719169

RESUMEN

BACKGROUND: Germline TP53 gene pathogenic variants (pv) cause a very high lifetime risk of developing cancer, almost 100% for women and 75% for men. In the UK, annual MRI breast screening is recommended for female TP53 pv carriers. The SIGNIFY study (Magnetic Resonance Imaging screening in Li Fraumeni syndrome: An exploratory whole body MRI) study reported outcomes of whole-body MRI (WB-MRI) in a cohort of 44 TP53 pv carriers and 44 matched population controls. The results supported the use of a baseline WB-MRI screen in all adult TP53 pv carriers. Here we report the acceptability of WB-MRI screening and effects on psychosocial functioning and health-related quality of life in the short and medium terms. METHODS: Psychosocial and other assessments were carried out at study enrolment, immediately before MRI, before and after MRI results, and at 12, 26 and 52 weeks' follow-up. RESULTS: WB-MRI was found to be acceptable with high levels of satisfaction and low levels of psychological morbidity throughout. Although their mean levels of cancer worry were not high, carriers had significantly more cancer worry at most time-points than controls. They also reported significantly more clinically significant intrusive and avoidant thoughts about cancer than controls at all time-points. There were no clinically significant adverse psychosocial outcomes in either carriers with a history of cancer or in those requiring further investigations. CONCLUSION: WB-MRI screening can be implemented in TP53 pv carriers without adverse psychosocial outcomes in the short and medium terms. A previous cancer diagnosis may predict a better psychosocial outcome. Some carriers seriously underestimate their risk of cancer. Carriers of pv should have access to a clinician to help them develop adaptive strategies to cope with cancer-related concerns and respond to clinically significant depression and/or anxiety.


Asunto(s)
Síndrome de Li-Fraumeni/diagnóstico , Imagen por Resonancia Magnética , Neoplasias/diagnóstico , Proteína p53 Supresora de Tumor/genética , Adulto , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Heterocigoto , Humanos , Síndrome de Li-Fraumeni/diagnóstico por imagen , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patología , Masculino , Persona de Mediana Edad , Neoplasias/diagnóstico por imagen , Neoplasias/genética , Neoplasias/patología , Factores de Riesgo , Imagen de Cuerpo Entero , Adulto Joven
13.
Front Oncol ; 9: 941, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649872

RESUMEN

Background: Multi-parametric MRI provides non-invasive methods for response assessment of soft-tissue sarcoma (STS) from non-surgical treatments. However, evaluation of MRI parameters over the whole tumor volume may not reveal the full extent of post-treatment changes as STS tumors are often highly heterogeneous, including cellular tumor, fat, necrosis, and cystic tissue compartments. In this pilot study, we investigate the use of machine-learning approaches to automatically delineate tissue compartments in STS, and use this approach to monitor post-radiotherapy changes. Methods: Eighteen patients with retroperitoneal sarcoma were imaged using multi-parametric MRI; 8/18 received a follow-up imaging study 2-4 weeks after pre-operative radiotherapy. Eight commonly-used supervised machine-learning techniques were optimized for classifying pixels into one of five tissue sub-types using an exhaustive cross-validation approach and expert-defined regions of interest as a gold standard. Final pixel classification was smoothed using a Markov Random Field (MRF) prior distribution on the final machine-learning models. Findings: 5/8 machine-learning techniques demonstrated high median cross-validation accuracies (82.2%, range 80.5-82.5%) with no significant difference between these five methods. One technique was selected (Naïve-Bayes) due to its relatively short training and class-prediction times (median 0.73 and 0.69 ms, respectively on a 3.5 GHz personal machine). When combined with the MRF-prior, this approach was successfully applied in all eight post-radiotherapy imaging studies and provided visualization and quantification of changes to independent STS sub-regions following radiotherapy for heterogeneous response assessment. Interpretation: Supervised machine-learning approaches to tissue classification in multi-parametric MRI of soft-tissue sarcomas provide quantitative evaluation of heterogeneous tissue changes following radiotherapy.

14.
Front Oncol ; 9: 280, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31106141

RESUMEN

Purpose: To evaluate repeatability of quantitative multi-parametric MRI in retroperitoneal sarcomas, assess parameter changes with radiotherapy, and correlate pre-operative values with histopathological findings in the surgical specimens. Materials and Methods: Thirty patients with retroperitoneal sarcoma were imaged at baseline, of whom 27 also underwent a second baseline examination for repeatability assessment. 14/30 patients were treated with pre-operative radiotherapy and were imaged again after completing radiotherapy (50.4 Gy in 28 daily fractions, over 5.5 weeks). The following parameter estimates were assessed in the whole tumor volume at baseline and following radiotherapy: apparent diffusion coefficient (ADC), parameters of the intra-voxel incoherent motion model of diffusion-weighted MRI (D, f, D*), transverse relaxation rate, fat fraction, and enhancing fraction after gadolinium-based contrast injection. Correlation was evaluated between pre-operative quantitative parameters and histopathological assessments of cellularity and fat fraction in post-surgical specimens (ClinicalTrials.gov, registration number NCT01902667). Results: Upper and lower 95% limits of agreement were 7.1 and -6.6%, respectively for median ADC at baseline. Median ADC increased significantly post-radiotherapy. Pre-operative ADC and D were negatively correlated with cellularity (r = -0.42, p = 0.01, 95% confidence interval (CI) -0.22 to -0.59 for ADC; r = -0.45, p = 0.005, 95% CI -0.25 to -0.62 for D), and fat fraction from Dixon MRI showed strong correlation with histopathological assessment of fat fraction (r = 0.79, p = 10-7, 95% CI 0.69-0.86). Conclusion: Fat fraction on MRI corresponded to fat content on histology and therefore contributes to lesion characterization. Measurement repeatability was excellent for ADC; this parameter increased significantly post-radiotherapy even in disease categorized as stable by size criteria, and corresponded to cellularity on histology. ADC can be utilized for characterizing and assessing response in heterogeneous retroperitoneal sarcomas.

15.
Pediatr Hematol Oncol ; 36(2): 103-112, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30978130

RESUMEN

Objectives: Diffusion-weighted magnetic resonance imaging (DW-MRI) offers potential to monitor response and predict survival in high-grade gliomas (HGG) and diffuse intrinsic pontine gliomas (DIPG). We hypothesized that post-radiotherapy DW-MRI may provide prognostic imaging biomarkers in children and young adults with these tumors. Methods: Patients aged ≤21 years diagnosed between 2005 and 2012 were eligible. The tumor median apparent diffusion coefficient (ADC) and its 5th percentile (C5-ADC) were determined at the first post-radiotherapy scan and at the time of radiological progression. DW-MRI parameters were correlated with survival endpoints, temozolomide use and pseudoprogression, when it occurred. Results: Out of 40 patients (20 HGG, 20 DIPG), 23 had evaluable DW-MRI post-radiotherapy and 25 at radiological progression. There were 6 episodes of pseudoprogression. Hazard ratios (95%CI) for progression-free survival were 0.998 (0.993-1.003) for median ADC and 1.003 (0.996-1.010) for C5-ADC. Hazard ratios (95%CI) for overall survival were 1.0009 (0.996-1.006) for median ADC and 0.998 (0.992-1.004) for C5-ADC. Post-radiotherapy median and C5-ADC values were not significantly different between patients treated with radiotherapy alone versus radiotherapy/temozolomide. The median and C5-ADC values were not significantly different at the time of pseudoprogression compared to those at tumor progression. Conclusions: Post-radiotherapy median ADC and C5-ADC were not prognostic, nor able to differentiate radiosensitization with temozolomide or occurrence of pseudoprogression in this cohort of HGG and DIPG patients. Further exploration of alternative DW parameters, study timepoints or data modeling may contribute to the development of prognostic/predictive imaging biomarkers for children and young adults with HGG or DIPG.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Imagen de Difusión por Resonancia Magnética , Glioma/radioterapia , Sustancia Blanca/patología , Adolescente , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/mortalidad , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/radioterapia , Niño , Preescolar , Terapia Combinada , Difusión , Progresión de la Enfermedad , Femenino , Glioma/tratamiento farmacológico , Glioma/mortalidad , Glioma/patología , Humanos , Masculino , Pronóstico , Modelos de Riesgos Proporcionales , Temozolomida/uso terapéutico , Adulto Joven
16.
Magn Reson Med ; 82(2): 527-550, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30919510

RESUMEN

Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/metabolismo , Consenso , Humanos , Protones
17.
Phys Med Biol ; 64(11): 115005, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-30844775

RESUMEN

MR-guided radiotherapy treatment planning utilises the high soft-tissue contrast of MRI to reduce uncertainty in delineation of the target and organs at risk. Replacing 4D-CT with MRI-derived synthetic 4D-CT would support treatment plan adaptation on hybrid MR-guided radiotherapy systems for inter- and intrafractional differences in anatomy and respiration, whilst mitigating the risk of CT to MRI registration errors. Three methods were devised to calculate synthetic 4D and midposition (time-weighted mean position of the respiratory cycle) CT from 4D-T1w and Dixon MRI. The first approach employed intensity-based segmentation of Dixon MRI for bulk-density assignment (sCTD). The second step added spine density information using an atlas of CT and Dixon MRI (sCTDS). The third iteration used a polynomial function relating Hounsfield units and normalised T1w image intensity to account for variable lung density (sCTDSL). Motion information in 4D-T1w MRI was applied to generate synthetic CT in midposition and in twenty respiratory phases. For six lung cancer patients, synthetic 4D-CT was validated against 4D-CT in midposition by comparison of Hounsfield units and dose-volume metrics. Dosimetric differences found by comparing sCTD,DS,DSL and CT were evaluated using a Wilcoxon signed-rank test (p  = 0.05). Compared to sCTD and sCTDS, planning on sCTDSL significantly reduced absolute dosimetric differences in the planning target volume metrics to less than 98 cGy (1.7% of the prescribed dose) on average. When comparing sCTDSL and CT, average radiodensity differences were within 97 Hounsfield units and dosimetric differences were significant only for the planning target volume D99% metric. All methods produced clinically acceptable results for the organs at risk in accordance with the UK SABR consensus guidelines and the LungTech EORTC phase II trial. The overall good agreement between sCTDSL and CT demonstrates the feasibility of employing synthetic 4D-CT for plan adaptation on hybrid MR-guided radiotherapy systems.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Tomografía Computarizada Cuatridimensional/métodos , Imagen por Resonancia Magnética/métodos , Radiografía Torácica/métodos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Algoritmos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Movimiento , Dosificación Radioterapéutica , Respiración
18.
Br J Cancer ; 119(9): 1118-1128, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30377337

RESUMEN

BACKGROUND: AKT is commonly overexpressed in tumours and plays an important role in the metabolic reprogramming of cancer. We have used magnetic resonance spectroscopy (MRS) to assess whether inhibition of AKT signalling would result in metabolic changes that could potentially be used as biomarkers to monitor response to AKT inhibition. METHODS: Cellular and metabolic effects of the allosteric AKT inhibitor MK-2206 were investigated in HT29 colon and PC3 prostate cancer cells and xenografts using flow cytometry, immunoblotting, immunohistology and MRS. RESULTS: In vitro treatment with MK-2206 inhibited AKT signalling and resulted in time-dependent alterations in glucose, glutamine and phospholipid metabolism. In vivo, MK-2206 resulted in inhibition of AKT signalling and tumour growth compared with vehicle-treated controls. In vivo MRS analysis of HT29 subcutaneous xenografts showed similar metabolic changes to those seen in vitro including decreases in the tCho/water ratio, tumour bioenergetic metabolites and changes in glutamine and glutathione metabolism. Similar phosphocholine changes compared to in vitro were confirmed in the clinically relevant orthotopic PC3 model. CONCLUSION: This MRS study suggests that choline metabolites detected in response to AKT inhibition are time and microenvironment-dependent, and may have potential as non-invasive biomarkers for monitoring response to AKT inhibitors in selected cancer types.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino
19.
Med Phys ; 45(12): 5525-5534, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30229930

RESUMEN

PURPOSE: The treatment of moving targets with scanned proton beams is challenging. For motion mitigation, an Active Breathing Coordinator (ABC) can be used to assist breath-holding. The delivery of pencil beam scanning fields often exceeds feasible breath-hold durations, requiring high breath-hold reproducibility. We evaluated the robustness of scanned proton therapy against anatomical uncertainties when treating nonsmall-cell lung cancer (NSCLC) patients during ABC controlled breath-hold. METHODS: Four subsequent MRIs of five healthy volunteers (3 male, 2 female, age: 25-58, BMI: 19-29) were acquired under ABC controlled breath-hold during two simulated treatment fractions, providing both intrafractional and interfractional information about breath-hold reproducibility. Deformation vector fields between these MRIs were used to deform CTs of five NSCLC patients. Per patient, four or five cases with different tumor locations were modeled, simulating a total of 23 NSCLC patients. Robustly optimized (3 and 5 mm setup uncertainty respectively and 3% density perturbation) intensity-modulated proton plans (IMPT) were created and split into subplans of 20 s duration (assumed breath-hold duration). A fully fractionated treatment was recalculated on the deformed CTs. For each treatment fraction the deformed CTs representing multiple breath-hold geometries were alternated to simulate repeated ABC breath-holding during irradiation. Also a worst-case scenario was simulated by recalculating the complete treatment plan on the deformed CT scan showing the largest deviation with the first deformed CT scan, introducing a systematic error. Both the fractionated breath-hold scenario and worst-case scenario were dosimetrically evaluated. RESULTS: Looking at the deformation vector fields between the MRIs of the volunteers, up to 8 mm median intra- and interfraction displacements (without outliers) were found for all lung segments. The dosimetric evaluation showed a median difference in D98% between the planned and breath-hold scenarios of -0.1 Gy (range: -4.1 Gy to 2.0 Gy). D98% target coverage was more than 57.0 Gy for 22/23 cases. The D1 cc of the CTV increased for 21/23 simulations, with a median difference of 0.9 Gy (range: -0.3 to 4.6 Gy). For 14/23 simulations the increment was beyond the allowed maximum dose of 63.0 Gy, though remained under 66.0 Gy (110% of the prescribed dose of 60.0 Gy). Organs at risk doses differed little compared to the planned doses (difference in mean doses <0.9 Gy for the heart and lungs, <1.4% difference in V35 [%] and V20 [%] to the esophagus and lung). CONCLUSIONS: When treating under ABC controlled breath-hold, robustly optimized IMPT plans show limited dosimetric consequences due to anatomical variations between repeated ABC breath-holds for most cases. Thus, the combination of robustly optimized IMPT plans and the delivery under ABC controlled breath-hold presents a safe approach for PBS lung treatments.


Asunto(s)
Pulmón/patología , Pulmón/efectos de la radiación , Terapia de Protones/métodos , Adulto , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/fisiopatología , Neoplasias Pulmonares/radioterapia , Masculino , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Terapia de Protones/efectos adversos , Radiometría , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Reproducibilidad de los Resultados , Seguridad , Tomografía Computarizada por Rayos X
20.
Cancer Epidemiol Biomarkers Prev ; 27(12): 1500-1508, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30228153

RESUMEN

BACKGROUND: Endogenous hormones are associated with breast cancer risk, but little is known about their role on breast tissue composition, a strong risk predictor. This study aims to investigate the relationship between growth and sex hormone levels and breast tissue composition in young nulliparous women. METHODS: A cross-sectional study of 415 young (age ∼21.5 years) nulliparous women from an English prebirth cohort underwent a MRI examination of their breasts to estimate percent-water (a proxy for mammographic percent density) and provided a blood sample to measure plasma levels of growth factors (insulin-like growth factor-I, insulin-like growth factor-II, insulin growth factor-binding protein-3, growth hormone) and, if not on hormonal contraception (n = 117) sex hormones (dehydroepiandrosterone, androstenedione, testosterone, estrone, estadiol, sex hormone-binding globulin, prolactin). Testosterone (n = 330) and sex hormone-binding globulin (n = 318) were also measured at age 15.5 years. Regression models were used to estimate the relative difference (RD) in percent-water associated with one SD increment in hormone levels. RESULTS: Estradiol at age 21.5 and sex hormone-binding globulin at age 21.5 were positively associated with body mass index (BMI)-adjusted percent-water [RD (95% confidence interval (CI)): 3% (0%-7%) and 3% (1%-5%), respectively]. There was a positive nonlinear association between androstenedione at age 21.5 and percent-water. Insulin-like growth factor-I and growth hormone at age 21.5 were also positively associated with BMI-adjusted percent-water [RD (95% CI): 2% (0%-4%) and 4% (1%-7%), respectively]. CONCLUSIONS: The findings suggest that endogenous hormones affect breast tissue composition in young nulliparous women. IMPACT: The well-established associations of childhood growth and development with breast cancer risk may be partly mediated by the role of endogenous hormones on breast tissue composition.


Asunto(s)
Mama/metabolismo , Hormona del Crecimiento/metabolismo , Globulina de Unión a Hormona Sexual/metabolismo , Adolescente , Adulto , Estudios Transversales , Femenino , Humanos , Paridad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...