Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 682, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755049

RESUMEN

Snakebite envenoming continues to claim many lives across the globe, necessitating the development of improved therapies. To this end, broadly-neutralizing human monoclonal antibodies may possess advantages over current plasma-derived antivenoms by offering superior safety and high neutralization capacity. Here, we report the establishment of a pipeline based on phage display technology for the discovery and optimization of high affinity broadly-neutralizing human monoclonal antibodies. This approach yielded a recombinant human antibody with superior broadly-neutralizing capacities in vitro and in vivo against different long-chain α-neurotoxins from elapid snakes. This antibody prevents lethality induced by Naja kaouthia whole venom at an unprecedented low molar ratio of one antibody per toxin and prolongs the survival of mice injected with Dendroaspis polylepis or Ophiophagus hannah whole venoms.


Asunto(s)
Venenos Elapídicos , Neurotoxinas , Humanos , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Elapidae , Antivenenos , Anticuerpos Monoclonales
2.
MAbs ; 14(1): 2085536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35699567

RESUMEN

The monocled cobra (Naja kaouthia) is among the most feared snakes in Southeast Asia due to its toxicity, which is predominantly derived from long-chain α-neurotoxins. The only specific treatment for snakebite envenoming is antivenom based on animal-derived polyclonal antibodies. Despite the lifesaving importance of these medicines, major limitations in safety, supply consistency, and efficacy create a need for improved treatments. Here, we describe the discovery and subsequent optimization of a recombinant human monoclonal immunoglobulin G antibody against α-cobratoxin using phage display technology. Affinity maturation by light chain-shuffling resulted in a significant increase in in vitro neutralization potency and in vivo efficacy. The optimized antibody prevented lethality when incubated with N. kaouthia whole venom prior to intravenous injection. This study is the first to demonstrate neutralization of whole snake venom by a single recombinant monoclonal antibody, thus providing a tantalizing prospect of bringing recombinant antivenoms based on human monoclonal or oligoclonal antibodies to the clinic.


Asunto(s)
Elapidae , Mordeduras de Serpientes , Animales , Anticuerpos Monoclonales/farmacología , Antivenenos/farmacología , Venenos Elapídicos/toxicidad , Humanos , Mordeduras de Serpientes/tratamiento farmacológico
3.
Front Immunol ; 12: 678570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211469

RESUMEN

Passive immunization using monoclonal antibodies will play a vital role in the fight against COVID-19. The recent emergence of viral variants with reduced sensitivity to some current antibodies and vaccines highlights the importance of broad cross-reactivity. This study describes deep-mining of the antibody repertoires of hospitalized COVID-19 patients using phage display technology and B cell receptor (BCR) repertoire sequencing to isolate neutralizing antibodies and gain insights into the early antibody response. This comprehensive discovery approach has yielded a panel of potent neutralizing antibodies which bind distinct viral epitopes including epitopes conserved in SARS-CoV-1. Structural determination of a non-ACE2 receptor blocking antibody reveals a previously undescribed binding epitope, which is unlikely to be affected by the mutations in any of the recently reported major viral variants including B.1.1.7 (from the UK), B.1.351 (from South Africa) and B.1.1.28 (from Brazil). Finally, by combining sequences of the RBD binding and neutralizing antibodies with the B cell receptor repertoire sequencing, we also describe a highly convergent early antibody response. Similar IgM-derived sequences occur within this study group and also within patient responses described by multiple independent studies published previously.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/prevención & control , COVID-19/terapia , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Técnicas de Visualización de Superficie Celular/métodos , Minería de Datos/métodos , Epítopos/inmunología , Humanos , Inmunización Pasiva/métodos , Sueroterapia para COVID-19
4.
MAbs ; 12(1): 1829335, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33103593

RESUMEN

The early phase of protein drug development has traditionally focused on target binding properties leading to a desired mode of therapeutic action. As more protein therapeutics pass through the development pipeline; however, it is clear that non-optimal biophysical properties can emerge, particularly as proteins are formulated at high concentrations, causing aggregation or polyreactivity. Such late-stage "developability" problems can lead to delay or failure in traversing the development process. Aggregation propensity is also correlated with increased immunogenicity, resulting in expensive, late-stage clinical failures. Using nucleases-directed integration, we have constructed large mammalian display libraries where each cell contains a single antibody gene/cell inserted at a single locus, thereby achieving transcriptional normalization. We show a strong correlation between poor biophysical properties and display level achieved in mammalian cells, which is not replicated by yeast display. Using two well-documented examples of antibodies with poor biophysical characteristics (MEDI-1912 and bococizumab), a library of variants was created based on surface hydrophobic and positive charge patches. Mammalian display was used to select for antibodies that retained target binding and permitted increased display level. The resultant variants exhibited reduced polyreactivity and reduced aggregation propensity. Furthermore, we show in the case of bococizumab that biophysically improved variants are less immunogenic than the parental molecule. Thus, mammalian display helps to address multiple developability issues during the earliest stages of lead discovery, thereby significantly de-risking the future development of protein drugs.


Asunto(s)
Anticuerpos Monoclonales Humanizados/genética , Anticuerpos Monoclonales Humanizados/inmunología , Afinidad de Anticuerpos/genética , Técnicas de Visualización de Superficie Celular , Células HEK293 , Humanos
5.
MAbs ; 11(5): 884-898, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31107136

RESUMEN

The construction of large libraries in mammalian cells allows the direct screening of millions of molecular variants for binding properties in a cell type relevant for screening or production. We have created mammalian cell libraries of up to 10 million clones displaying a repertoire of IgG-formatted antibodies on the cell surface. TALE nucleases or CRISPR/Cas9 were used to direct the integration of the antibody genes into a single genomic locus, thereby rapidly achieving stable expression and transcriptional normalization. The utility of the system is illustrated by the affinity maturation of a PD-1-blocking antibody through the systematic mutation and functional survey of 4-mer variants within a 16 amino acid paratope region. Mutating VH CDR3 only, we identified a dominant "solution" involving substitution of a central tyrosine to histidine. This appears to be a local affinity maximum, and this variant was surpassed by a lysine substitution when light chain variants were introduced. We achieve this comprehensive and quantitative interrogation of sequence space by combining high-throughput oligonucleotide synthesis with mammalian display and flow cytometry operating at the multi-million scale.


Asunto(s)
Anticuerpos Monoclonales Humanizados/genética , Afinidad de Anticuerpos , Sitios de Unión de Anticuerpos/genética , Animales , Sitios de Unión de Anticuerpos/inmunología , Células CHO , Sistemas CRISPR-Cas , Regiones Determinantes de Complementariedad/genética , Cricetulus , Endodesoxirribonucleasas , Citometría de Flujo , Edición Génica , Células HEK293 , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Mutagénesis Sitio-Dirigida , Receptor de Muerte Celular Programada 1/inmunología
6.
Nat Commun ; 9(1): 4957, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459411

RESUMEN

In the original version of this Article, the sixth sentence of the first paragraph of the Introduction incorrectly read 'Particularly, elapid antivenoms often have an unbalanced antibody content with relatively low amounts of antibodies against small neurotoxic venom components that have low immunogenicity, which often leads to low immune cgqtns in production animals8-10'. The correct version states 'responses' instead of 'cgqtns'. This has been corrected in both the PDF and HTML versions of the Article.

7.
Nat Commun ; 9(1): 3928, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279409

RESUMEN

The black mamba (Dendroaspis polylepis) is one of the most feared snake species of the African savanna. It has a potent, fast-acting neurotoxic venom comprised of dendrotoxins and α-neurotoxins associated with high fatality in untreated victims. Current antivenoms are both scarce on the African continent and present a number of drawbacks as they are derived from the plasma of hyper-immunized large mammals. Here, we describe the development of an experimental recombinant antivenom by a combined toxicovenomics and phage display approach. The recombinant antivenom is based on a cocktail of fully human immunoglobulin G (IgG) monoclonal antibodies capable of neutralizing dendrotoxin-mediated neurotoxicity of black mamba whole venom in a rodent model. Our results show the potential use of fully human monoclonal IgGs against animal toxins and the first use of oligoclonal human IgG mixtures against experimental snakebite envenoming.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Antivenenos/química , Dendroaspis , Venenos Elapídicos/inmunología , Factores Inmunológicos/química , Mordeduras de Serpientes/tratamiento farmacológico , Animales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antivenenos/uso terapéutico , Evaluación Preclínica de Medicamentos , Venenos Elapídicos/antagonistas & inhibidores , Factores Inmunológicos/uso terapéutico , Ratones , Pruebas de Neutralización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA