Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166263, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34481868

RESUMEN

The immune system is a key component of tumorigenesis, with the latter promoting the development of cancer, its progression and metastasis. In fact, abundant infiltration of tumor-associated macrophages (TAM), which are M2-like macrophages, has been associated with a poor outcome in most types of cancers. Here, we show that lactate produced by murine melanoma B16F10 cells induces an M2-like profile in cultured macrophages. Further, we demonstrate that clotrimazole (CTZ), an off-target anti-tumor drug, abolishes lactate effects on the activation of macrophages and induces the expression of M1-like markers. We show that clotrimazole has cytotoxic effects on tumor cells by negatively modulating PI3K, which inhibits glycolytic metabolism and leads to a diminishing lactate production by these cells. These effects are more pronounced in cancer cells exposed to conditioned media of M2-polarized macrophages. Moreover, clotrimazole inhibits tumor growth in a murine model of implanted melanoma, reduces lactate content in a tumor microenvironment and decreases vascular endothelial growth factor expression. Finally, clotrimazole drastically diminishes TAM infiltration in the tumors, thereby inducing M1 polarization. Collectively, these findings identify a new antitumor mechanism of clotrimazole by modulating the tumor microenvironment (TME), particularly the activation and viability of TAM.


Asunto(s)
Clotrimazol/farmacología , Melanoma Experimental/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Animales , Antineoplásicos , Línea Celular Tumoral , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Macrófagos Asociados a Tumores/efectos de los fármacos
2.
Cell Death Dis ; 12(7): 643, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162829

RESUMEN

Among the principal causative factors for the development of complications related to aging is a diet rich in fats and sugars, also known as the Western diet. This diet advocates numerous changes that might increase the susceptibility to initiate cancer and/or to create a tissue microenvironment more conducive to the growth of malignant cells, thus favoring the progression of cancer and metastasis. Hypercaloric diets in general lead to oxidative stress generating reactive oxygen species and induce endoplasmic reticulum stress. Our results demonstrate that mice bearing tumors fed with a Western diet presented bigger tumor mass with increased insulin sensitivity in these tissues. Several markers of insulin signaling, such as AKT phosphorylation and mTOR pathway, are promoted in tumors of Western diet-fed animals. This process is associated with increased macrophage infiltration, activation of unfolded protein response pathway, and initiation of epithelial-mesenchymal transition (EMT) process in these tumor tissues. Summing up, we propose that the Western diet accelerates the aging-related processes favoring tumor development.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Dieta Occidental/efectos adversos , Transición Epitelial-Mesenquimal , Mediadores de Inflamación/metabolismo , Melanoma Experimental/metabolismo , Neoplasias Cutáneas/metabolismo , Respuesta de Proteína Desplegada , Factores de Edad , Animales , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Factores de Tiempo , Carga Tumoral , Microambiente Tumoral , Respuesta de Proteína Desplegada/genética
3.
Curr Top Med Chem ; 18(17): 1483-1493, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30221602

RESUMEN

BACKGROUND: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. EXPERIMENTAL: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. RESULTS AND CONCLUSION: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Triazoles/farmacología , Animales , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Triazoles/química
4.
Front Immunol ; 8: 1478, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163542

RESUMEN

Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of "lean homeostasis" and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

5.
Biomed Pharmacother ; 88: 948-955, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28178626

RESUMEN

Obesity and diabetes are metabolic diseases and they are increasing in prevalence. The dynamics of gene expression associated with these diseases is fundamental to identifying genes involved in related biological processes. qPCR is a sensitive technique for mRNA quantification and the most commonly used method in gene-expression studies. However, the reliability of these results is directly influenced by data normalization. As reference genes are the major normalization method used, this work aims to identify reference genes for qPCR in adipose tissues of mice with type-I diabetes or obesity. We selected 12 genes that are commonly used as reference genes. The expression of these genes in the adipose tissues of mice was analyzed in the context of three different experimental protocols: 1) untreated animals; 2) high-fat-diet animals; and 3) streptozotocin-treated animals. Gene-expression stability was analyzed using four different algorithms. Our data indicate that TATA-binding protein is stably expressed across adipose tissues in control animals. This gene was also a useful reference when the brown adipose tissues of control and obese mice were analyzed. The mitochondrial ATP synthase F1 complex gene exhibits stable expression in subcutaneous and perigonadal adipose tissue from control and obese mice. Moreover, this gene is the best reference for qPCR normalization in adipose tissue from streptozotocin-treated animals. These results show that there is no perfect stable gene suited for use under all experimental conditions. In conclusion, the selection of appropriate genes is a prerequisite to ensure qPCR reliability and must be performed separately for different experimental protocols.


Asunto(s)
Tejido Adiposo/metabolismo , Enfermedades Metabólicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Animales , Diabetes Mellitus Experimental/genética , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Obesos , Estándares de Referencia
6.
Br J Nutr ; 115(6): 967-73, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26863933

RESUMEN

Overweight and obesity have become epidemic worldwide and are linked to sedentary lifestyle and the consumption of processed foods and drinks. Citrate is a metabolite that plays central roles in carbohydrate and lipid metabolism. In addition, citrate is the additive most commonly used by the food industry, and therefore is highly consumed. Extracellular citrate can freely enter the cells via the constitutively expressed plasma membrane citrate transporter. Within the cytosol, citrate is readily metabolised by ATP-citrate lyase into acetyl-CoA - the metabolic precursor of endogenously produced lipids and cholesterol. We therefore hypothesised that the citrate ingested from processed foods and drinks could contribute to increased postprandial fat production and weight gain. To test our hypothesis, we administered citrate to mice through their drinking water with or without sucrose and monitored their weight gain and other metabolic parameters. Our results showed that mice receiving citrate or citrate+sucrose did not show increased weight gain or an increase in the weight of the liver, skeletal muscles or adipose tissues (AT). Moreover, the plasma lipid profiles (TAG, total cholesterol, LDL and HDL) were similar across all groups. However, the group receiving citrate+sucrose showed augmented fasting glycaemia, glucose intolerance and the expression of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6 and IL-10) in their AT. Therefore, our results suggest that citrate consumption contributes to increased AT inflammation and altered glucose metabolism, which is indicative of initial insulin resistance. Thus, citrate consumption could be a previously unknown causative agent for the complications associated with obesity.


Asunto(s)
Ácido Cítrico/efectos adversos , Sacarosa en la Dieta/efectos adversos , Aditivos Alimentarios/efectos adversos , Intolerancia a la Glucosa/etiología , Resistencia a la Insulina , Grasa Intraabdominal/inmunología , Paniculitis/etiología , Animales , Citocinas/sangre , Dieta Occidental/efectos adversos , Intolerancia a la Glucosa/inmunología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Lípidos/sangre , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Tamaño de los Órganos , Paniculitis/inmunología , Paniculitis/metabolismo , Paniculitis/patología , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...