Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1355405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720891

RESUMEN

Introduction: Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results: We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion: The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.


Asunto(s)
Células Supresoras de Origen Mieloide , Sepsis , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Humanos , Sepsis/inmunología , Transcriptoma , Masculino , Femenino , Diferenciación Celular/inmunología , Perfilación de la Expresión Génica
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38725155

RESUMEN

Single-cell RNA sequencing (scRNA-seq) experiments have become instrumental in developmental and differentiation studies, enabling the profiling of cells at a single or multiple time-points to uncover subtle variations in expression profiles reflecting underlying biological processes. Benchmarking studies have compared many of the computational methods used to reconstruct cellular dynamics; however, researchers still encounter challenges in their analysis due to uncertainty with respect to selecting the most appropriate methods and parameters. Even among universal data processing steps used by trajectory inference methods such as feature selection and dimension reduction, trajectory methods' performances are highly dataset-specific. To address these challenges, we developed Escort, a novel framework for evaluating a dataset's suitability for trajectory inference and quantifying trajectory properties influenced by analysis decisions. Escort evaluates the suitability of trajectory analysis and the combined effects of processing choices using trajectory-specific metrics. Escort navigates single-cell trajectory analysis through these data-driven assessments, reducing uncertainty and much of the decision burden inherent to trajectory inference analyses. Escort is implemented in an accessible R package and R/Shiny application, providing researchers with the necessary tools to make informed decisions during trajectory analysis and enabling new insights into dynamic biological processes at single-cell resolution.


Asunto(s)
RNA-Seq , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , RNA-Seq/métodos , Humanos , Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Algoritmos , Perfilación de la Expresión Génica/métodos , Análisis de Expresión Génica de una Sola Célula
3.
Bioinformatics ; 39(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37498558

RESUMEN

MOTIVATION: Single-cell RNA-sequencing (scRNA-seq) has enabled the molecular profiling of thousands to millions of cells simultaneously in biologically heterogenous samples. Currently, the common practice in scRNA-seq is to determine cell type labels through unsupervised clustering and the examination of cluster-specific genes. However, even small differences in analysis and parameter choosing can greatly alter clustering results and thus impose great influence on which cell types are identified. Existing methods largely focus on determining the optimal number of robust clusters, which can be problematic for identifying cells of extremely low abundance due to their subtle contributions toward overall patterns of gene expression. RESULTS: Here, we present a carefully designed framework, SCISSORS, which accurately profiles subclusters within broad cluster(s) for the identification of rare cell types in scRNA-seq data. SCISSORS employs silhouette scoring for the estimation of heterogeneity of clusters and reveals rare cells in heterogenous clusters by a multi-step semi-supervised reclustering process. Additionally, SCISSORS provides a method for the identification of marker genes of high specificity to the cell type. SCISSORS is wrapped around the popular Seurat R package and can be easily integrated into existing Seurat pipelines. AVAILABILITY AND IMPLEMENTATION: SCISSORS, including source code and vignettes, are freely available at https://github.com/jr-leary7/SCISSORS.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , ARN
4.
bioRxiv ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38187622

RESUMEN

The rapid proliferation of trajectory inference methods for single-cell RNA-seq data has allowed researchers to investigate complex biological processes by examining underlying gene expression dynamics. After estimating a latent cell ordering, statistical models are used to determine which genes exhibit changes in expression that are significantly associated with progression through the biological trajectory. While a few techniques for performing trajectory differential expression exist, most rely on the flexibility of generalized additive models in order to account for the inherent nonlinearity of changes in gene expression. As such, the results can be difficult to interpret, and biological conclusions often rest on subjective visual inspections of the most dynamic genes. To address this challenge, we propose scLANE testing, which is built around an interpretable generalized linear model and handles nonlinearity with basis splines chosen empirically for each gene. In addition, extensions to estimating equations and mixed models allow for reliable trajectory testing under complex experimental designs. After validating the accuracy of scLANE under several different simulation scenarios, we apply it to a set of diverse biological datasets and display its ability to provide novel biological information when used downstream of both pseudotime and RNA velocity estimation methods.

5.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187768

RESUMEN

Single-cell RNA sequencing (scRNA-seq) experiments have become instrumental in developmental and differentiation studies, enabling the profiling of cells at a single or multiple time-points to uncover subtle variations in expression profiles reflecting underlying biological processes. Benchmarking studies have compared many of the computational methods used to reconstruct cellular dynamics, however researchers still encounter challenges in their analysis due to uncertainties in selecting the most appropriate methods and parameters. Even among universal data processing steps used by trajectory inference methods such as feature selection and dimension reduction, trajectory methods' performances are highly dataset-specific. To address these challenges, we developed Escort, a framework for evaluating a dataset's suitability for trajectory inference and quantifying trajectory properties influenced by analysis decisions. Escort navigates single-cell trajectory analysis through data-driven assessments, reducing uncertainty and much of the decision burden associated with trajectory inference. Escort is implemented in an accessible R package and R/Shiny application, providing researchers with the necessary tools to make informed decisions during trajectory analysis and enabling new insights into dynamic biological processes at single-cell resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...