Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008347

RESUMEN

Previously, Tuller et al. found that the first 30-50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5' slow translation 'ramp.' We confirm that 5' regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5' translation. However, we also find that the 5' (and 3') ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5' end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5' ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5' end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5' ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5' translation is a 'spandrel'--a non-adaptive consequence of something else, in this case, the turnover of 5' ends in evolution, and it does not improve translation.


Asunto(s)
Codón , Evolución Molecular , Biosíntesis de Proteínas , Saccharomyces cerevisiae , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/genética , Codón/genética , Uso de Codones , Ribosomas/metabolismo , Ribosomas/genética , Regiones no Traducidas 5'/genética
2.
Open Biol ; 8(9)2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30257894

RESUMEN

The RNA-binding protein Mei2 is crucial for meiosis in Schizosaccharomyces pombe. In mei2 mutants, pre-meiotic S-phase is blocked, along with meiosis. Mei2 binds a long non-coding RNA (lncRNA) called meiRNA, which is a 'sponge RNA' for the meiotic inhibitor protein Mmi1. The interaction between Mei2, meiRNA and Mmi1 protein is essential for meiosis. But mei2 mutants have stronger and different phenotypes than meiRNA mutants, since mei2Δ arrests before pre-meiotic S, while the meiRNA mutant arrests after pre-meiotic S but before meiosis. This suggests Mei2 may bind additional RNAs. To identify novel RNA targets of Mei2, which might explain how Mei2 regulates pre-meiotic S, we used RNA immunoprecipitation and cross-linking immunoprecipitation. In addition to meiRNA, we found the mRNAs for mmi1 (which encodes Mmi1) and for the S-phase transcription factor rep2 There were also three other RNAs of uncertain relevance. We suggest that at meiotic initiation, Mei2 may sequester rep2 mRNA to help allow pre-meiotic S, and then may bind both meiRNA and mmi1 mRNA to inactivate Mmi1 at two levels, the protein level (as previously known), and also the mRNA level, allowing meiosis. We call Mei2-meiRNA a 'double sponge' (i.e. binding both an mRNA and its encoded protein).


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Transactivadores/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Regiones no Traducidas 5' , Inmunoprecipitación , Meiosis , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Unión al ARN/genética , Schizosaccharomyces/metabolismo , Análisis de Secuencia de ARN , Transactivadores/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
3.
RNA ; 22(9): 1311-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27402898

RESUMEN

The RNA exosome is a conserved complex for RNA degradation with two ribonucleolytic subunits, Dis3 and Rrp6. Rrp6 is a 3'-5' exonuclease, but it also has a structural role in helping target RNAs to the Dis3 activity. The relative importance of the exonuclease activity and the targeting activity probably differs between different RNA substrates, but this is poorly understood. To understand the relative contributions of the exonuclease and the targeting activities to the degradation of individual RNA substrates in Schizosaccharomyces pombe, we compared RNA levels in an rrp6 null mutant to those in an rrp6 point mutant specifically defective in exonuclease activity. A wide range of effects was found, with some RNAs dependent mainly on the structural role of Rrp6 ("protein-dependent" targets), other RNAs dependent mainly on the catalytic role ("activity-dependent" targets), and some RNAs dependent on both. Some protein-dependent RNAs contained motifs targeted via the RNA-binding protein Mmi1, while others contained a motif possibly involved in response to iron. In these and other cases Rrp6 may act as a structural adapter to target specific RNAs to the exosome by interacting with sequence-specific RNA-binding proteins.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , Ribonucleasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Unión Proteica , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
5.
Nucleic Acids Res ; 43(14): 6874-88, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25908789

RESUMEN

Mitotic genes are one of the most strongly oscillating groups of genes in the eukaryotic cell cycle. Understanding the regulation of mitotic gene expression is a key issue in cell cycle control but is poorly understood in most organisms. Here, we find a new mitotic transcription factor, Sak1, in the fission yeast Schizosaccharomyces pombe. Sak1 belongs to the RFX family of transcription factors, which have not previously been connected to cell cycle control. Sak1 binds upstream of mitotic genes in close proximity to Fkh2, a forkhead transcription factor previously implicated in regulation of mitotic genes. We show that Sak1 is the major activator of mitotic gene expression and also confirm the role of Fkh2 as the opposing repressor. Sep1, another forkhead transcription factor, is an activator for a small subset of mitotic genes involved in septation. From yeasts to humans, forkhead transcription factors are involved in mitotic gene expression and it will be interesting to see whether RFX transcription factors may also be involved in other organisms.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación Fúngica de la Expresión Génica , Mitosis/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Proteínas Represoras/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
6.
G3 (Bethesda) ; 4(6): 1173-82, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24727291

RESUMEN

Yeast sporulation is a highly regulated developmental program by which diploid cells generate haploid gametes, termed spores. To better define the genetic pathways regulating sporulation, a systematic screen of the set of ~3300 nonessential Schizosaccharomyces pombe gene deletion mutants was performed to identify genes required for spore formation. A high-throughput genetic method was used to introduce each mutant into an h(90) background, and iodine staining was used to identify sporulation-defective mutants. The screen identified 34 genes whose deletion reduces sporulation, including 15 that are defective in forespore membrane morphogenesis. In S. pombe, the total number of sporulation-defective mutants is a significantly smaller fraction of coding genes than in S. cerevisiae, which reflects the different evolutionary histories and biology of the two yeasts.


Asunto(s)
Estudio de Asociación del Genoma Completo , Mutación , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Esporas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Haploidia , Meiosis/genética , Fenotipo , Eliminación de Secuencia
7.
Genetics ; 196(4): 1059-76, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24514900

RESUMEN

The involvement of Schizosaccharomyces pombe prm1(+) in cell fusion during mating and its relationship with other genes required for this process have been addressed. S. pombe prm1Δ mutant exhibits an almost complete blockade in cell fusion and an abnormal distribution of the plasma membrane and cell wall in the area of cell-cell interaction. The distribution of cellular envelopes is similar to that described for mutants devoid of the Fig1-related claudin-like Dni proteins; however, prm1(+) and the dni(+) genes act in different subpathways. Time-lapse analyses show that in the wild-type S. pombe strain, the distribution of phosphatidylserine in the cytoplasmic leaflet of the plasma membrane undergoes some modification before an opening is observed in the cross wall at the cell-cell contact region. In the prm1Δ mutant, this membrane modification does not take place, and the cross wall between the mating partners is not extensively degraded; plasma membrane forms invaginations and fingers that sometimes collapse/retract and that are sometimes strengthened by the synthesis of cell-wall material. Neither prm1Δ nor prm1Δ dniΔ zygotes lyse after cell-cell contact in medium containing and lacking calcium. Response to drugs that inhibit lipid synthesis or interfere with lipids is different in wild-type, prm1Δ, and dni1Δ strains, suggesting that membrane structure/organization/dynamics is different in all these strains and that Prm1p and the Dni proteins exert some functions required to guarantee correct membrane organization that are critical for cell fusion.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/ultraestructura , Membrana Celular/ultraestructura , Pared Celular/ultraestructura , Depsipéptidos/farmacología , Ácidos Grasos Monoinsaturados/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/genética , Miconazol/farmacología , Modelos Biológicos , Schizosaccharomyces/citología , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética
8.
Nucleic Acids Res ; 40(15): 7176-89, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22573177

RESUMEN

We have used micrococcal nuclease (MNase) digestion followed by deep sequencing in order to obtain a higher resolution map than previously available of nucleosome positions in the fission yeast, Schizosaccharomyces pombe. Our data confirm an unusually short average nucleosome repeat length, ∼152 bp, in fission yeast and that transcriptional start sites (TSSs) are associated with nucleosome-depleted regions (NDRs), ordered nucleosome arrays downstream and less regularly spaced upstream nucleosomes. In addition, we found enrichments for associated function in four of eight groups of genes clustered according to chromatin configurations near TSSs. At replication origins, our data revealed asymmetric localization of pre-replication complex (pre-RC) proteins within large NDRs-a feature that is conserved in fission and budding yeast and is therefore likely to be conserved in other eukaryotic organisms.


Asunto(s)
Cromatina/química , Origen de Réplica , Schizosaccharomyces/genética , Sitio de Iniciación de la Transcripción , Proteínas de Unión al ADN/análisis , Genes Fúngicos , Secuenciación de Nucleótidos de Alto Rendimiento , Nucleasa Microcócica , Nucleosomas/química , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/análisis , Análisis de Secuencia de ADN
9.
J Virol ; 86(8): 4340-57, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22318145

RESUMEN

We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a time course of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently infected B cell line. During de novo infection, all open reading frames (ORFs) were transcribed and clustered into four major temporal groups that were overlapping yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation time course. High-density transcript analysis at 2-h intervals during de novo infection mapped gene boundaries with a 20-nucleotide resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of Kaposi's sarcoma-associated herpesvirus vNLRP1. ORF6 transcript initiation was mapped by tiled array and confirmed by 5' rapid amplification of cDNA ends. The ∼1.3-kb region upstream of ORF6 was responsive to lytic infection and MHV68 RTA, identifying a novel RTA-responsive promoter. Transcription in intergenic regions consistent with the previously defined expressed genomic regions was detected during both types of productive infection. We conclude that the MHV68 transcriptome is dynamic and distinct during de novo fibroblast infection and upon phorbol ester-stimulated B cell reactivation, highlighting the need to evaluate further transcript structure and the context-dependent molecular events that govern viral gene expression during chronic infection.


Asunto(s)
Gammaherpesvirinae/genética , Perfilación de la Expresión Génica , Transcriptoma , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/virología , Línea Celular , Análisis por Conglomerados , Biología Computacional , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación Viral de la Expresión Génica , Genoma Viral , Activación de Linfocitos/efectos de los fármacos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , Elementos Reguladores de la Transcripción , Reproducibilidad de los Resultados , Acetato de Tetradecanoilforbol/farmacología
10.
PLoS One ; 7(1): e29917, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22238674

RESUMEN

In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.


Asunto(s)
Genes Fúngicos , Meiosis/genética , Oligodesoxirribonucleótidos Antisentido/farmacología , Proteínas de Schizosaccharomyces pombe/fisiología , Factores de Transcripción/fisiología , Secuencia de Bases , Análisis por Conglomerados , Regulación hacia Abajo/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos/efectos de los fármacos , Genes Fúngicos/genética , Meiosis/efectos de los fármacos , Análisis por Micromatrices , Datos de Secuencia Molecular , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos
11.
PLoS One ; 6(10): e26804, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22046364

RESUMEN

The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/G)AAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.


Asunto(s)
Meiosis/genética , Poliadenilación/genética , Empalme del ARN/genética , Estabilidad del ARN/genética , ARN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Factores de Escisión y Poliadenilación de ARNm/fisiología , Intrones , ARN de Hongos/genética , Proteínas de Unión al ARN
12.
Science ; 332(6032): 930-6, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21511999

RESUMEN

The fission yeast clade--comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus--occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.


Asunto(s)
Genoma Fúngico , Schizosaccharomyces/genética , Centrómero/genética , Centrómero/fisiología , Centrómero/ultraestructura , Elementos Transponibles de ADN , Evolución Molecular , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Genómica , Glucosa/metabolismo , Meiosis , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , ARN sin Sentido/genética , ARN de Hongos/genética , ARN Interferente Pequeño/genética , ARN no Traducido/genética , Elementos Reguladores de la Transcripción , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
13.
Mol Cell Biol ; 31(11): 2311-25, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21444721

RESUMEN

A screen of Saccharomyces cerevisiae histone alanine substitution mutants revealed that mutations in any of three adjacent residues, L97, Y98, or G99, near the C terminus of H4 led to a unique phenotype. The mutants grew slowly, became polyploid or aneuploid rapidly, and also lost chromosomes at a high rate, most likely because their kinetochores were not assembled properly. There was lower histone occupancy, not only in the centromeric region, but also throughout the genome for the H4 mutants. The mutants displayed genetic interactions with the genes encoding two different histone chaperones, Rtt106 and CAF-I. Affinity purification of Rtt106 and CAF-I from yeast showed that much more H4 and H3 were bound to these histone chaperones in the case of the H4 mutants than in the wild type. However, in vitro binding experiments showed that the H4 mutant proteins bound somewhat more weakly to Rtt106 than did wild-type H4. These data suggest that the H4 mutant proteins, along with H3, accumulate on Rtt106 and CAF-I in vivo because they cannot be deposited efficiently on DNA or passed on to the next step in the histone deposition pathway, and this contributes to the observed genome instability and growth defects.


Asunto(s)
Inestabilidad Genómica , Histonas/genética , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Cromatina , Citometría de Flujo , Genoma Fúngico , Histonas/química , Cinetocoros/ultraestructura , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Fenotipo , Ploidias , Unión Proteica , Ribonucleasas/genética , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
15.
Mol Cell ; 33(6): 738-51, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19328067

RESUMEN

Cyclin-dependent kinases (CDKs) are subunits of transcription factor (TF) IIH and positive transcription elongation factor b (P-TEFb). To define their functions, we mutated the TFIIH-associated kinase Mcs6 and P-TEFb homologs Cdk9 and Lsk1 of fission yeast, making them sensitive to inhibition by bulky purine analogs. Selective inhibition of Mcs6 or Cdk9 blocks cell division, alters RNA polymerase (Pol) II carboxyl-terminal domain (CTD) phosphorylation, and represses specific, overlapping subsets of transcripts. At a common target gene, both CDKs must be active for normal Pol II occupancy, and Spt5-a CDK substrate and regulator of elongation-accumulates disproportionately to Pol II when either kinase is inhibited. In contrast, Mcs6 activity is sufficient-and necessary-to recruit the Cdk9/Pcm1 (mRNA cap methyltransferase) complex. In vitro, phosphorylation of the CTD by Mcs6 stimulates subsequent phosphorylation by Cdk9. We propose that TFIIH primes the CTD and promotes recruitment of P-TEFb/Pcm1, serving to couple elongation and capping of select pre-mRNAs.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/genética , Caperuzas de ARN/genética , Schizosaccharomyces/metabolismo , Factor de Transcripción TFIIH/genética , Transcripción Genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factor de Transcripción TFIIH/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Quinasa Activadora de Quinasas Ciclina-Dependientes
16.
Nat Struct Mol Biol ; 16(3): 255-64, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19198588

RESUMEN

Expression of crs1 pre-mRNA, encoding a meiotic cyclin, is blocked in actively growing fission yeast cells by a multifaceted mechanism. The most striking feature is that in vegetative cells, crs1 transcripts are continuously synthesized but are targeted for degradation rather than splicing and polyadenylation. Turnover of crs1 RNA requires the exosome, as do previously described nuclear surveillance and silencing mechanisms, but does not involve a noncanonical poly(A) polymerase. Instead, crs1 transcripts are targeted for destruction by a factor previously implicated in turnover of meiotic RNAs in growing cells. Like exosome mutants, mmi1 mutants splice and polyadenylate vegetative crs1 transcripts. Two regulatory elements are located at the 3' end of the crs1 gene, consistent with the increased accumulation of spliced RNA in polyadenylation factor mutants. This highly integrated regulatory strategy may ensure a rapid response to adverse conditions, thereby guaranteeing survival.


Asunto(s)
Ciclinas/biosíntesis , Proteínas Fúngicas/biosíntesis , Regulación Fúngica de la Expresión Génica , ARN de Hongos/metabolismo , Schizosaccharomyces/fisiología , Exosomas/metabolismo , Modelos Biológicos , Polinucleotido Adenililtransferasa/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN , Estabilidad del ARN , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
18.
Mol Biol Cell ; 19(12): 5550-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18799612

RESUMEN

Origins of DNA replication are generally inefficient, with most firing in fewer than half of cell cycles. However, neither the mechanism nor the importance of the regulation of origin efficiency is clear. In fission yeast, origin firing is stochastic, leading us to hypothesize that origin inefficiency and stochasticity are the result of a diffusible, rate-limiting activator. We show that the Hsk1-Dfp1 replication kinase (the fission yeast Cdc7-Dbf4 homologue) plays such a role. Increasing or decreasing Hsk1-Dfp1 levels correspondingly increases or decreases origin efficiency. Furthermore, tethering Hsk1-Dfp1 near an origin increases the efficiency of that origin, suggesting that the effective local concentration of Hsk1-Dfp1 regulates origin firing. Using photobleaching, we show that Hsk1-Dfp1 is freely diffusible in the nucleus. These results support a model in which the accessibility of replication origins to Hsk1-Dfp1 regulates origin efficiency and provides a potential mechanistic link between chromatin structure and replication timing. By manipulating Hsk1-Dfp1 levels, we show that increasing or decreasing origin firing rates leads to an increase in genomic instability, demonstrating the biological importance of appropriate origin efficiency.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Origen de Réplica , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Inestabilidad Cromosómica , Recuperación de Fluorescencia tras Fotoblanqueo , Regulación Fúngica de la Expresión Génica , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética
19.
Mol Cell ; 31(3): 307-8, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18691962

RESUMEN

In a recent issue of Nature, Skotheim et al. (2008) show that a transcriptional positive feedback loop plays a key role in the commitment to enter the yeast cell cycle.


Asunto(s)
Ciclo Celular , Ciclinas/metabolismo , Retroalimentación Fisiológica , Ciclina G , Ciclina G1 , Humanos , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Transcripción Genética
20.
Mol Cell Biol ; 28(19): 5977-85, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18662996

RESUMEN

The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G(1)/S transcriptional program by directly regulating MBF, the G(1)/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G(1)/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G(1)/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Transcripción/metabolismo , Quinasa de Punto de Control 2 , Replicación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA