Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 956, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177596

RESUMEN

Cellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts. We demonstrate that TRPC3 protein, acting as a controller of mitochondrial Ca2+ load via negative regulation of IP3 receptor-mediated Ca2+ release, is down regulated in senescence regardless of the type of senescence inducer. This remodelling promotes cytosolic/mitochondrial Ca2+ oscillations and elevates mitochondrial Ca2+ load, mitochondrial oxygen consumption rate and oxidative phosphorylation. Re-expression of TRPC3 in senescent cells diminishes mitochondrial Ca2+ load and promotes escape from OIS-induced senescence. Cellular senescence evoked by TRPC3 downregulation in stromal cells displays a proinflammatory and tumour-promoting secretome that encourages cancer epithelial cell proliferation and tumour growth in vivo. Altogether, our results unravel the mechanism contributing to pro-tumour behaviour of senescent cells.


Asunto(s)
Carcinogénesis/patología , Neoplasias/patología , Canales Catiónicos TRPC/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Cultivo Primario de Células
2.
Microorganisms ; 8(10)2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33027936

RESUMEN

Interest in preventive or therapeutic strategies targeting gut microbiota is increasing. Such strategies may involve the direct replenishment of the gut microbiota with single strains or strain mixtures, or the manipulation of strain abundance through dietary intervention, including lactic acid bacteria. A few candidate species associated with health benefits have been identified, including Faecalibacterium prausnitzii. Given its growth requirements, modulation of this bacterium has not been extensively studied. In this investigation, we explored the capacity of cell-free supernatants of different Lactobacillus, Streptococcus, Lactococcus, and Bifidobacterium strains to stimulate the growth of F. prausnitzii A2-165. Modulation by four strains with the greatest capacity to stimulate growth or delay lysis, Lactococcus lactis subsp. lactis CNCM I-1631, Lactococcus lactis subsp. cremoris CNCM I-3558, Lactobacillus paracasei CNCM I-3689, and Streptococcus thermophilus CNCM I-3862, was further characterized by transcriptomics. The response of F. prausnitzii to cell-free supernatants from these four strains revealed several shared characteristics, in particular, upregulation of carbohydrate metabolism and cell wall-related genes and downregulation of replication and mobilome genes. Overall, this study suggests differential responses of F. prausnitzii to metabolites produced by different strains, providing protection against cell death, with an increase in peptidoglycan levels for cell wall formation, and reduced cell mobilome activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA