Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 27(9): 110660, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39262787

RESUMEN

Atrial fibrillation (AF) is the most common arrhythmia in the world. Human genetics can provide strong AF therapeutic candidates, but the identification of the causal genes and their functions remains challenging. Here, we applied an AF fine-mapping strategy that leverages results from a previously published cross-ancestry genome-wide association study (GWAS), expression quantitative trait loci (eQTLs) from left atrial appendages (LAAs) obtained from two cohorts with distinct ancestry, and a paired RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) LAA single-nucleus assay (sn-multiome). At nine AF loci, our co-localization and fine-mapping analyses implicated 14 genes. Data integration identified several candidate causal AF variants, including rs7612445 at GNB4 and rs242557 at MAPT. Finally, we showed that the repression of the strongest AF-associated eQTL gene, LINC01629, in human embryonic stem cell-derived cardiomyocytes using CRISPR inhibition results in the dysregulation of pathways linked to genes involved in the development of atrial tissue and the cardiac conduction system.

2.
Sci Rep ; 13(1): 3924, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894706

RESUMEN

Epigenomic profiling, including ATACseq, is one of the main tools used to define enhancers. Because enhancers are overwhelmingly cell-type specific, inference of their activity is greatly limited in complex tissues. Multiomic assays that probe in the same nucleus both the open chromatin landscape and gene expression levels enable the study of correlations (links) between these two modalities. Current best practices to infer the regulatory effect of candidate cis-regulatory elements (cCREs) in multiomic data involve removing biases associated with GC content by generating null distributions of matched ATACseq peaks drawn from different chromosomes. This strategy has been broadly adopted by popular single-nucleus multiomic workflows such as Signac. Here, we uncovered limitations and confounders of this approach. We found a strong loss of power to detect a regulatory effect for cCREs with high read counts in the dominant cell-type. We showed that this is largely due to cell-type-specific trans-ATACseq peak correlations creating bimodal null distributions. We tested alternative models and concluded that physical distance and/or the raw Pearson correlation coefficients are the best predictors for peak-gene links when compared to predictions from Epimap (e.g. CD14 area under the curve [AUC] = 0.51 with the method implemented in Signac vs. 0.71 with the Pearson correlation coefficients) or validation by CRISPR perturbations (AUC = 0.63 vs. 0.73).


Asunto(s)
Cromatina , Multiómica , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos , Epigenómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA