Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38050098

RESUMEN

Freezing is a defensive behavior commonly examined during hippocampal-mediated fear engram reactivation. How these cellular populations engage the brain and modulate freezing across varying environmental demands is unclear. To address this, we optogenetically reactivated a fear engram in the dentate gyrus subregion of the hippocampus across three distinct contexts in male mice. We found that there were differential amounts of light-induced freezing depending on the size of the context in which reactivation occurred: mice demonstrated robust light-induced freezing in the most spatially restricted of the three contexts but not in the largest. We then utilized graph theoretical analyses to identify brain-wide alterations in cFos expression during engram reactivation across the smallest and largest contexts. Our manipulations induced positive interregional cFos correlations that were not observed in control conditions. Additionally, regions spanning putative "fear" and "defense" systems were recruited as hub regions in engram reactivation networks. Lastly, we compared the network generated from engram reactivation in the small context with a natural fear memory retrieval network. Here, we found shared characteristics such as modular composition and hub regions. By identifying and manipulating the circuits supporting memory function, as well as their corresponding brain-wide activity patterns, it is thereby possible to resolve systems-level biological mechanisms mediating memory's capacity to modulate behavioral states.


Asunto(s)
Hipocampo , Memoria , Masculino , Ratones , Animales , Hipocampo/fisiología , Memoria/fisiología , Miedo/fisiología , Neuronas/fisiología
2.
Neurobiol Aging ; 125: 9-31, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801699

RESUMEN

Network dysfunction is implicated in numerous diseases and psychiatric disorders, and the hippocampus serves as a common origin for these abnormalities. To test the hypothesis that chronic modulation of neurons and astrocytes induces impairments in cognition, we activated the hM3D(Gq) pathway in CaMKII+ neurons or GFAP+ astrocytes within the ventral hippocampus across 3, 6, and 9 months. CaMKII-hM3Dq activation impaired fear extinction at 3 months and acquisition at 9 months. Both CaMKII-hM3Dq manipulation and aging had differential effects on anxiety and social interaction. GFAP-hM3Dq activation impacted fear memory at 6 and 9 months. GFAP-hM3Dq activation impacted anxiety in the open field only at the earliest time point. CaMKII-hM3Dq activation modified the number of microglia, while GFAP-hM3Dq activation impacted microglial morphological characteristics, but neither affected these measures in astrocytes. Overall, our study elucidates how distinct cell types can modify behavior through network dysfunction, while adding a more direct role for glia in modulating behavior.


Asunto(s)
Astrocitos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Humanos , Astrocitos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Extinción Psicológica , Miedo , Neuronas/metabolismo , Hipocampo/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(12): e2114230119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35286206

RESUMEN

For group-living animals, the social environment provides salient experience that can weaken or strengthen aspects of cognition such as memory recall. Although the cellular substrates of individually acquired fear memories in the dentate gyrus (DG) and basolateral amygdala (BLA) have been well-studied and recent work has revealed circuit mechanisms underlying the encoding of social experience, the processes by which social experience interacts with an individual's memories to alter recall remain unknown. Here we show that stressful social experiences enhance the recall of previously acquired fear memories in male but not female mice, and that social buffering of conspecifics' distress blocks this enhancement. Activity-dependent tagging of cells in the DG during fear learning revealed that these ensembles were endogenously reactivated during the social experiences in males, even after extinction. These reactivated cells were shown to be functional components of engrams, as optogenetic stimulation of the cells active during the social experience in previously fear-conditioned and not naïve animals was sufficient to drive fear-related behaviors. Taken together, our findings suggest that social experiences can reactivate preexisting engrams to thereby strengthen discrete memories.


Asunto(s)
Miedo , Memoria , Interacción Social , Animales , Miedo/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología
4.
Neurobiol Learn Mem ; 176: 107321, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33164892

RESUMEN

The hippocampus processes both spatial-temporal information and emotionally salient experiences. To test the functional properties of discrete sets of cells in the dorsal dentate gyrus (dDG), we examined whether chronic optogenetic reactivation of these ensembles was sufficient to modulate social behaviors in mice. We found that chronic reactivation of discrete dDG cell populations in male mice largely did not affect social behaviors in an experience-dependent manner. However, we found that social behavior in a female exposure task was increased following chronic optogenetic stimulation when compared to pre-stimulation levels, suggesting that the protocol led to increased social behavior, although alternative explanations are discussed. Furthermore, multi-region analysis of neural activity did not yield detectable differences in immediate-early gene expression or neurogenesis following chronic optogenetic stimulation. Together, these results suggest that the effects of chronic optogenetic stimulation in the dDG on social behaviors are independent of the contextual experience processed by each cellular ensemble.


Asunto(s)
Giro Dentado/fisiología , Memoria/fisiología , Optogenética , Conducta Social , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología
5.
J Neurosci ; 40(46): 8782-8798, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177112

RESUMEN

Many mammals have evolved to be social creatures. In humans, the ability to learn from others' experiences is essential to survival; and from an early age, individuals are surrounded by a social environment that helps them develop a variety of skills, such as walking, talking, and avoiding danger. Similarly, in rodents, behaviors, such as food preference, exploration of novel contexts, and social approach, can be learned through social interaction. Social encounters facilitate new learning and help modify preexisting memories throughout the lifespan of an organism. Moreover, social encounters can help buffer stress or the effects of negative memories, as well as extinguish maladaptive behaviors. Given the importance of such interactions, there has been increasing work studying social learning and applying its concepts in a wide range of fields, including psychotherapy and medical sociology. The process of social learning, including its neural and behavioral mechanisms, has also been a rapidly growing field of interest in neuroscience. However, the term "social learning" has been loosely applied to a variety of psychological phenomena, often without clear definition or delineations. Therefore, this review gives a definition for specific aspects of social learning, provides an overview of previous work at the circuit, systems, and behavioral levels, and finally, introduces new findings on the social modulation of learning. We contextualize such social processes in the brain both through the role of the hippocampus and its capacity to process "social engrams" as well as through the brainwide realization of social experiences. With the integration of new technologies, such as optogenetics, chemogenetics, and calcium imaging, manipulating social engrams will likely offer a novel therapeutic target to enhance the positive buffering effects of social experiences or to inhibit fear-inducing social stimuli in models of anxiety and post-traumatic stress disorder.


Asunto(s)
Aprendizaje/fisiología , Memoria/fisiología , Cognición Social , Animales , Humanos , Optogenética , Conducta Social
6.
Learn Mem ; 27(4): 150-163, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32179657

RESUMEN

Systems consolidation (SC) theory proposes that recent, contextually rich memories are stored in the hippocampus (HPC). As these memories become remote, they are believed to rely more heavily on cortical structures within the prefrontal cortex (PFC), where they lose much of their contextual detail and become schematized. Odor is a particularly evocative cue for intense remote memory recall and despite these memories being remote, they are highly contextual. In instances such as posttraumatic stress disorder (PTSD), intense remote memory recall can occur years after trauma, which seemingly contradicts SC. We hypothesized that odor may shift the organization of salient or fearful memories such that when paired with an odor at the time of encoding, they are delayed in the de-contextualization process that occurs across time, and retrieval may still rely on the HPC, where memories are imbued with contextually rich information, even at remote time points. We investigated this by tagging odor- and non-odor-associated fear memories in male c57BL/6 mice and assessed recall and c-Fos expression in the dorsal CA1 (dCA1) and prelimbic cortex (PL) 1 or 21 d later. In support of SC, our data showed that recent memories were more dCA1-dependent whereas remote memories were more PL-dependent. However, we also found that odor influenced this temporal dynamic, biasing the memory system from the PL to the dCA1 when odor cues were present. Behaviorally, inhibiting the dCA1 with activity-dependent DREADDs had no effect on recall at 1 d and unexpectedly caused an increase in freezing at 21 d. Together, these findings demonstrate that odor can shift the organization of fear memories at the systems level.


Asunto(s)
Región CA1 Hipocampal/fisiología , Miedo/fisiología , Giro del Cíngulo/fisiología , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Recuerdo Mental/fisiología , Percepción Olfatoria/fisiología , Animales , Señales (Psicología) , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...