Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275874

RESUMEN

Blood-based biomarkers represent ideal candidates for the development of non-invasive immuno-oncology-based assays. However, to date, no blood biomarker has been validated to predict clinical responses to immunotherapy. In this study, we used next-generation sequencing (RNAseq) on bulk RNA extracted from whole blood and tumor samples in a pre-clinical MIBC mouse model. We aimed to identify biomarkers associated with immunotherapy response and assess the potential application of simple non-invasive blood biomarkers as a therapeutic decision-making assay compared to tissue-based biomarkers. We established that circulating immune cells and the tumor microenvironment (TME) display highly organ-specific transcriptional responses to ICIs. Interestingly, in both, a common lymphocytic activation signature can be identified associated with the efficient response to immunotherapy, including a blood-specific CD8+ T cell activation/proliferation signature which predicts the immunotherapy response.

2.
Nat Immunol ; 24(10): 1645-1653, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37709986

RESUMEN

Persistent exposure to antigen during chronic infection or cancer renders T cells dysfunctional. The molecular mechanisms regulating this state of exhaustion are thought to be common in infection and cancer, despite obvious differences in their microenvironments. Here we found that NFAT5, an NFAT family transcription factor that lacks an AP-1 docking site, was highly expressed in exhausted CD8+ T cells in the context of chronic infections and tumors but was selectively required in tumor-induced CD8+ T cell exhaustion. Overexpression of NFAT5 in CD8+ T cells reduced tumor control, while deletion of NFAT5 improved tumor control by promoting the accumulation of tumor-specific CD8+ T cells that had reduced expression of the exhaustion-associated proteins TOX and PD-1 and produced more cytokines, such as IFNÉ£ and TNF, than cells with wild-type levels of NFAT5, specifically in the precursor exhausted PD-1+TCF1+TIM-3-CD8+ T cell population. NFAT5 did not promote T cell exhaustion during chronic infection with clone 13 of lymphocytic choriomeningitis virus. Expression of NFAT5 was induced by TCR triggering, but its transcriptional activity was specific to the tumor microenvironment and required hyperosmolarity. Thus, NFAT5 promoted the exhaustion of CD8+ T cells in a tumor-selective fashion.


Asunto(s)
Coriomeningitis Linfocítica , Neoplasias , Humanos , Factores de Transcripción/metabolismo , Linfocitos T CD8-positivos , Agotamiento de Células T , Infección Persistente , Microambiente Tumoral , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Virus de la Coriomeningitis Linfocítica , Neoplasias/metabolismo
3.
EMBO J ; 41(12): e109300, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35467036

RESUMEN

Group-2 innate lymphoid cells (ILC2s), which are involved in type 2 inflammatory diseases such as allergy, can exhibit immunological memory, but the basis of this ILC2 "trained immunity" has remained unclear. Here, we found that stimulation with IL-33/IL-25 or exposure to the allergen papain induces the expression of the transcription factor c-Maf in mouse ILC2s. Chronic papain exposure results in high production of IL-5 and IL-13 cytokines and lung eosinophil recruitment, effects that are blocked by c-Maf deletion in ILCs. Transcriptomic analysis revealed that knockdown of c-Maf in ILC2s suppresses expression of type 2 cytokine genes, as well as of genes linked to a memory-like phenotype. Consistently, c-Maf was found highly expressed in human adult ILC2s but absent in cord blood and required for cytokine production in isolated human ILC2s. Furthermore, c-Maf-deficient mouse or human ILC2s failed to exhibit strengthened ("trained") responses upon repeated challenge. Thus, the expression of c-Maf is indispensable for optimal type 2 cytokine production and proper memory-like responses in group-2 innate lymphoid cells.


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Citocinas/metabolismo , Humanos , Interleucina-33/genética , Interleucina-33/metabolismo , Pulmón/metabolismo , Linfocitos/metabolismo , Ratones , Papaína/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo
4.
Gut ; 71(3): 457-466, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34253574

RESUMEN

OBJECTIVE: In this study, we determined whether Helicobacter pylori (H. pylori) infection dampens the efficacy of cancer immunotherapies. DESIGN: Using mouse models, we evaluated whether immune checkpoint inhibitors or vaccine-based immunotherapies are effective in reducing tumour volumes of H. pylori-infected mice. In humans, we evaluated the correlation between H. pylori seropositivity and the efficacy of the programmed cell death protein 1 (PD-1) blockade therapy in patients with non-small-cell lung cancer (NSCLC). RESULTS: In mice engrafted with MC38 colon adenocarcinoma or B16-OVA melanoma cells, the tumour volumes of non-infected mice undergoing anticytotoxic T-lymphocyte-associated protein 4 and/or programmed death ligand 1 or anti-cancer vaccine treatments were significantly smaller than those of infected mice. We observed a decreased number and activation status of tumour-specific CD8+ T cells in the tumours of infected mice treated with cancer immunotherapies independent of the gut microbiome composition. Additionally, by performing an in vitro co-culture assay, we observed that dendritic cells of infected mice promote lower tumour-specific CD8+ T cell proliferation. We performed retrospective human clinical studies in two independent cohorts. In the Dijon cohort, H. pylori seropositivity was found to be associated with a decreased NSCLC patient survival on anti-PD-1 therapy. The survival median for H. pylori seropositive patients was 6.7 months compared with 15.4 months for seronegative patients (p=0.001). Additionally, in the Montreal cohort, H. pylori seropositivity was found to be associated with an apparent decrease of NSCLC patient progression-free survival on anti-PD-1 therapy. CONCLUSION: Our study unveils for the first time that the stomach microbiota affects the response to cancer immunotherapies and that H. pylori serology would be a powerful tool to personalize cancer immunotherapy treatment.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Infecciones por Helicobacter/complicaciones , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Adenocarcinoma/microbiología , Adenocarcinoma/patología , Animales , Vacunas contra el Cáncer/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/microbiología , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias del Colon/microbiología , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Femenino , Helicobacter pylori , Humanos , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estudios Retrospectivos
5.
Cancers (Basel) ; 13(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34572939

RESUMEN

Tumor-associated macrophages (TAMs) are one of the most abundant infiltrating immune cells of solid tumors. Despite their possible dual role, i.e., pro- or anti-tumoral, there is considerable evidence showing that the accumulation of TAMs promotes tumor progression rather than slowing it. Several strategies are being developed and clinically tested to target these cells. Bladder cancer (BCa) is one of the most common cancers, and despite heavy treatments, including immune checkpoint inhibitors (ICIs), the overall patient survival for advanced BCa is still poor. TAMs are present in bladder tumors and play a significant role in BCa development. However, few investigations have analyzed the effect of targeting TAMs in BCa. In this review, we focus on the importance of TAMs in a cancerous bladder, their association with patient outcome and treatment efficiency as well as on how current BCa treatments impact these cells. We also report different strategies used in other cancer types to develop new immunotherapeutic strategies with the aim of improving BCa management through TAMs targeting.

6.
Cancers (Basel) ; 12(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266255

RESUMEN

(1) We wanted to assess the impact of Ang2 in RCT-induced changes in the environment of glioblastoma. (2) The effect of Ang2 overexpression in tumor cells was studied in the GL261 syngeneic immunocompetent model of GB in response to fractionated RCT. (3) We showed that RCT combined with Ang2 led to tumor clearance for the GL261-Ang2 group by acting on the tumor cells as well as on both vascular and immune compartments. (4) In vitro, Ang2 overexpression in GL261 cells exposed to RCT promoted senescence and induced robust genomic instability, leading to mitotic death. (5) Coculture experiments of GL261-Ang2 cells with RAW 264.7 cells resulted in a significant increase in macrophage migration, which was abrogated by the addition of soluble Tie2 receptor. (6) Together, these preclinical results showed that, combined with RCT, Ang2 acted in an autocrine manner by increasing GB cell senescence and in a paracrine manner by acting on the innate immune system while modulating the vascular tumor compartment. On this preclinical model, we found that an ectopic expression of Ang2 combined with RCT impedes tumor recurrence.

7.
Cancers (Basel) ; 12(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718037

RESUMEN

Tumor hypoxia is known to limit the efficacy of ionizing radiations, a concept called oxygen enhancement ratio (OER). OER depends on physical factors such as pO2 and linear energy transfer (LET). Biological pathways, such as the hypoxia-inducible transcription factors (HIF), might also modulate the influence of LET on OER. Glioblastoma (GB) is resistant to low-LET radiation (X-rays), due in part to the hypoxic environment in this brain tumor. Here, we aim to evaluate in vitro whether high-LET particles, especially carbon ion radiotherapy (CIRT), can overcome the contribution of hypoxia to radioresistance, and whether HIF-dependent genes, such as erythropoietin (EPO), influence GB sensitivity to CIRT. Hypoxia-induced radioresistance was studied in two human GB cells (U251, GL15) exposed to X-rays or to carbon ion beams with various LET (28, 50, 100 keV/µm), and in genetically-modified GB cells with downregulated EPO signaling. Cell survival, radiobiological parameters, cell cycle, and ERK activation were assessed under those conditions. The results demonstrate that, although CIRT is more efficient than X-rays in GB cells, hypoxia can limit CIRT efficacy in a cell-type manner that may involve differences in ERK activation. Using high-LET carbon beams, or targeting hypoxia-dependent genes such as EPO might reduce the effects of hypoxia.

8.
Cancer Immunol Res ; 8(9): 1180-1192, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661095

RESUMEN

Bladder cancer is one of the most common malignancies and has poor prognosis for patients with locally advanced, muscle-invasive, disease despite the efficacy of immune checkpoint blockade. To develop more effective immunotherapy strategies, we studied a genetic mouse model carrying deletion of Tp53 and Pten in the bladder, which recapitulates bladder cancer tumorigenesis and gene expression patterns found in patients. We discovered that tumor cells became more malignant and the tumor immune microenvironment evolved from an inflammatory to an immunosuppressive state. Accordingly, treatment with anti-PD1 was ineffective, but resistance to anti-PD1 therapy was overcome by combination with a CD40 agonist (anti-CD40), leading to strong antitumor immune responses. Mechanistically, this combination led to CD8+ T-cell recruitment from draining lymph nodes. CD8+ T cells induced an IFNγ-dependent repolarization toward M1-like/IFNß-producing macrophages. CD8+ T cells, macrophages, IFN I, and IFN II were all necessary for tumor control, as demonstrated in vivo by the administration of blocking antibodies. Our results identify essential cross-talk between innate and adaptive immunity to control tumor development in a model representative of anti-PD1-resistant human bladder cancer and provide scientific rationale to target CD40 in combination with blocking antibodies, such as anti-PD1/PD-L1, for muscle-invasive bladder cancer.


Asunto(s)
Antígenos CD40/agonistas , Inmunoterapia/métodos , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/terapia , Animales , Antígenos CD40/inmunología , Antígenos CD40/metabolismo , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones
9.
Sci Rep ; 9(1): 6135, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992496

RESUMEN

The maintenance of homeostasis in the gut is a major challenge for the immune system. Here we demonstrate that the transcription factor MAF plays a central role in T cells for the prevention of gastro-intestinal inflammation. Conditional knock out mice lacking Maf in all T cells developed spontaneous late-onset colitis, correlating with a decrease of FOXP3+RORγt+ T cells proportion, dampened IL-10 production in the colon and an increase of inflammatory TH17 cells. Strikingly, FOXP3+ specific conditional knock out mice for MAF did not develop colitis and demonstrated normal levels of IL-10 in their colon, despite the incapacity of regulatory T cells lacking MAF to suppress colon inflammation in Rag1-/- mice transferred with naïve CD4+ T cells. We showed that one of the cellular sources of IL-10 in the colon of these mice are TH17 cells. Thus, MAF is critically involved in the maintenance of the gut homeostasis by regulating the balance between Treg and TH17 cells either at the level of their differentiation or through the modulation of their functions.


Asunto(s)
Colitis/genética , Proteínas Proto-Oncogénicas c-maf/genética , Linfocitos T Reguladores/patología , Células Th17/patología , Animales , Células Cultivadas , Colitis/inmunología , Colitis/patología , Femenino , Factores de Transcripción Forkhead/análisis , Factores de Transcripción Forkhead/inmunología , Eliminación de Gen , Interleucina-10/análisis , Interleucina-10/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/análisis , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Proteínas Proto-Oncogénicas c-maf/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología
10.
Oncotarget ; 8(42): 72597-72612, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069812

RESUMEN

In some highly inflammatory tumors, such as glioblastoma (GB), macrophages (MΦ) represent the most abundant population of reactive cells. MΦ, initially denoted as M0 MΦ, can be polarized into two further phenotypes: the antitumor M1 MΦ, and the protumor M2 MΦ. The three phenotypes can reside simultaneously in the tumor mass and various external factors may influence MΦ polarization. Radiotherapy is a common modality of cancer treatment aiming to target tumor cells. However, the specific effects of X-ray radiation on the inflammatory cells are, so far, controversial and not fully understood. In the present investigation, we have first analyzed, in vivo, the effect of X-ray radiation on MΦ present in GB tumors. We have observed a decrease in MΦ number paralleled by an increase in the proportion of M2 MΦ. To understand this phenomenon, we then evaluated, in vitro, the effects of X-rays on the MΦ phenotypes and survival. We have found that X-ray radiation failed to modify the phenotype of the different MΦ. However, M1 MΦ were more sensitive to ionizing radiation than M2 MΦ, both in normoxia and in hypoxia, which could explain the in vivo observations. To conclude, M2 MΦ are more radioresistant than M0 and M1 MΦ and the present study allows us to propose that X-ray radiotherapy could contribute, along with other phenomena, to the increased density in the protumor M2 MΦ in GB.

11.
J Cereb Blood Flow Metab ; 37(6): 2270-2282, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27496553

RESUMEN

The alleviation of hypoxia in glioblastoma with carbogen to improve treatment has met with limited success. Our hypothesis is that the eventual benefits of carbogen depend on the capacity for vasodilation. We examined, with MRI, changes in fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in response to carbogen. The analyses were performed in two xenograft models of glioma (U87 and U251) recognized to have different vascular patterns. Carbogen increased fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in contralateral tissues. In the tumor core and peritumoral regions, changes were dependent on the capacity to vasodilate rather than on resting fractional cerebral blood volume. In the highly vascularised U87 tumor, carbogen induced a greater increase in fractional cerebral blood volume and blood oxygen saturation in comparison to the less vascularized U251 tumor. The blood oxygenation level dependent signal revealed a delayed response in U251 tumors relative to the contralateral tissue. Additionally, we highlight the considerable heterogeneity of fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent within U251 tumor in which multiple compartments co-exist (tumor core, rim and peritumoral regions). Finally, our study underlines the complexity of the flow/metabolism interactions in different models of glioblastoma. These irregularities should be taken into account in order to palliate intratumoral hypoxia in clinical trials.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Dióxido de Carbono/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Glioblastoma/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Oxígeno/sangre , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Dióxido de Carbono/administración & dosificación , Glioblastoma/diagnóstico por imagen , Humanos , Oxígeno/administración & dosificación , Oxígeno/farmacología , Ratas Desnudas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Oncoimmunology ; 5(1): e1056442, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26942063

RESUMEN

Hypoxia is a common feature of solid tumors, particularly in glioblastoma (GBM), and known to be a poor prognosis factor in GBM patients. The growth of GBM is also associated with a marked inflammation partially characterized by an accumulation of macrophage (MΦ) of the M2 phenotype. However, the transition between M1 MΦ (antitumoral) and M2 MΦ (protumoral) phenotypes is a dynamic process. We made the assumption that oxygen (O2) availability could be a major regulator of this transition and that the intratumoral O2 gradient is of importance. We evaluated, in vivo, the impact of hypoxia on MΦ tropism and polarization in two models of human GBM, well differentiated by their degree of hypoxia. MΦ migration in the tumor was more pronounced in the more hypoxic tumor of the two GBM models. In the more hypoxic of the models, we have shown that MΦ migrated at the tumor site only when hypoxia takes place. We also demonstrated that the acquisition of the M2 phenotype was clearly an evolving phenomenon with hypoxia as the major trigger for this transition. In support of these in vivo finding, M0 but also M1 MΦ cultured in moderate or severe hypoxia displayed a phenotype close to that of M2 MΦ whose phenotype was further reinforced by severe hypoxia. These results highlight the role of hypoxia in the aggressiveness of GBM, in part, by transforming MΦ such that a protumoral activity is expressed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...