Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 33(3): e2816, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36752658

RESUMEN

Most research on boreal populations of woodland caribou (Rangifer tarandus caribou) has been conducted in areas of high anthropogenic disturbance. However, a large portion of the species' range overlaps relatively pristine areas primarily affected by natural disturbances, such as wildfire. Climate-driven habitat change is a key concern for the conservation of boreal-dependent species, where management decisions have yet to consider knowledge from multiple ecological domains integrated into a cohesive and spatially explicit forecast of species-specific habitat and demography. We used a novel ecological forecasting framework to provide climate-sensitive projections of habitat and demography for five boreal caribou monitoring areas within the Northwest Territories (NWT), Canada, over 90 years. Importantly, we quantify uncertainty around forecasted mean values. Our results suggest habitat suitability may increase in central and southwest regions of the NWT's Taiga Plains ecozone but decrease in southern and northwestern regions driven by conversion of coniferous to deciduous forests. We do not project that boreal caribou population growth rates will change despite forecasted changes to habitat suitability. Our results emphasize the importance of efforts to protect and restore northern boreal caribou habitat despite climate uncertainty while highlighting expected spatial variations that are important considerations for local people who rely on them. An ability to reproduce previous work, and critical thought when incorporating sources of uncertainty, will be important to refine forecasts, derive management decisions, and improve conservation efficacy for northern species at risk.


Asunto(s)
Reno , Animales , Humanos , Incertidumbre , Conservación de los Recursos Naturales/métodos , Ecosistema , Bosques
2.
Ecol Evol ; 8(24): 12629-12640, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30619569

RESUMEN

Habitat selection has received considerable attention from ecologists during the last decades, yet the underlying forces shaping individual differences in habitat selection are poorly documented. Some of these differences could be explained by the early experience of individuals in their natal habitat. By selecting habitat attributes like those encountered early in life, individuals could improve resource acquisition, survival, and ultimately fitness. This behavior, known as natal habitat preference induction (NHPI), could be particularly common in large mammals, because offspring generally stay with their mother for an extended period. We used three complementary approaches to assess NHPI in a marked population of woodland caribou (Rangifer tarandus caribou): (a) population-based resource selection functions (RSFs), (b) individual-based RSFs, and (c) behavioral repeatability analyses. All approaches compared the behavior of calves in their natal range to their behavior as independent subadults during the snow-covered (Dec-Apr) and snow-free (May-Nov) seasons. Using RSFs, we found that the magnitude of habitat selection between calf and subadult stages differed for most covariates, yet the signs of statistically significant effects (selection vs. avoidance) were generally the same. We also found that some habitat selection tactics were highly repeatable across life stages. Notably, caribou responses to habitat disturbances were highly repeatable year-round, meaning that different individuals reacted differently, but consistently, to disturbances. This study highlights the potential role of natal habitat preference induction in shaping individual differences in habitat selection in large mammals and provides valuable knowledge for the management and conservation of a threatened species.

3.
Mov Ecol ; 4: 14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27099756

RESUMEN

BACKGROUND: Freshwater lakes and rivers of the Northern Hemisphere have been freezing increasingly later and thawing increasingly earlier during the last century. With reduced temporal periods during which ice conditions are favourable for locomotion, freshwater bodies could become impediments to the inter-patch movements, dispersion, or migration of terrestrial animals that use ice-covered lakes and rivers to move across their range. Studying the fine-scale responses of individuals to broad-scale changes in ice availability and phenology would help to understand how animals react to ongoing climate change, and contribute to the conservation and management of endangered species living in northern environments. Between 2007 and 2014, we equipped 96 migratory caribou Rangifer tarandus caribou from the Rivière-aux-Feuilles herd in northern Québec (Canada) with GPS telemetry collars and studied their space use. We measured contemporary (digital MODIS maps updated every 8 days, 2000-2014) and historical (annual observations, 1947-1985) variations in freshwater-ice availability and evaluated the concurrent responses of caribou to these changes. RESULTS: Ice had a positive influence on caribou movement rates and directionality, and caribou selected ice and avoided water when moving across or in the vicinity of large water bodies. When ice was unavailable, caribou rarely swam across (6 % of crossings) and frequently circumvented water bodies for several km. Although ice phenology did not change significantly during our study, climate projections indicated that ice availability could decrease considerably before the end of the century, generating a ~28 % increase in distance travelled by caribou during the early spring and fall migrations. CONCLUSIONS: We demonstrated that ice availability influenced the movements of a migratory arctic ungulate. Warmer air temperatures in the Arctic will undoubtedly modify the phenology of ice forming on freshwater lakes and rivers. If migratory caribou are unable to adjust the timing of their migrations, they could be forced to circumvent unfrozen water bodies more frequently and over broader areas, which may increase the distance, time, and energy they use to reach wintering areas. The long-term conservation of wide-ranging species will ultimately depend on our ability to identify the fine-scale behavioural reactions of individuals to broad-scale changes in climate and land use.

4.
PLoS One ; 8(9): e73695, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040029

RESUMEN

Anthropogenic disturbances have been demonstrated to affect animal behavior, distribution, and abundance, but assessment of their impacts on fitness-related traits has received little attention. We hypothesized that human activities and infrastructure cause a decrease in the individual performance of preys because of anthropogenically enhanced predation risk. We evaluated the impacts of commercial logging and road networks on the fitness of a large herbivore known to be sensitive to human disturbance: the forest-dwelling woodland caribou (Rangifer tarandus caribou). For 8 consecutive years (2004-2011) we monitored 59 individuals using GPS telemetry in the Charlevoix region of Québec, Canada. We also used Very High Frequency telemetry locations collected on 28 individuals from 1999-2000. We related habitat selection of adult caribou at various spatio-temporal scales to their probability of dying from predation, and to indices of their reproductive success and energy expenditure. The probability that adult caribou died from predation increased with the proportion of recent disturbances (including cutblocks ≤ 5 years old) in their annual home range. The respective effects of increasing paved and forestry road densities depended upon the overall road density within the home range of caribou. At a finer scale of 10 to 15 days before their death, caribou that were killed by a predator selected for recent disturbances more than individuals that survived, and avoided old mature conifer stands. The home range area of caribou increased with road density. Finally, the composition of the home range of females had no effect on their reproductive success. We show that human activities and infrastructure may influence the individual performance of large prey species in highly managed regions. We outline the need to consider the full set of impacts that human development may have on threatened animal populations, with particular emphasis on predator-prey relationships and population dynamics.


Asunto(s)
Ecosistema , Actividades Humanas , Conducta Predatoria/fisiología , Reno/fisiología , Factores de Edad , Animales , Conservación de los Recursos Naturales/métodos , Femenino , Agricultura Forestal/métodos , Fenómenos de Retorno al Lugar Habitual/fisiología , Modelos Logísticos , Masculino , Modelos Biológicos , Densidad de Población , Dinámica Poblacional , Quebec , Factores de Riesgo , Telemetría/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA