Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 183: 114077, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36084611

RESUMEN

Extraction of petroleum oil resources may result in oil spills in the aquatic environment. Active and passive satellites are generally limited in either spatial coverage, temporal revisit periods, or spatial resolution when tracking surface oil slicks. PlanetScope passive satellites are reported to have near daily global coverage at a resolution of 3.5 m at nadir. These satellites may complement monitoring and fill temporal gaps by leveraging sun glint caused by the nadir viewing angle. Here, we demonstrate potential for PlanetScope satellite usage by investigating overpass timing and sun glint intensity. The United States potential for use was greatest during summer solstice and at lower latitudes. When combined with other high-resolution active and passive satellites, PlanetScope coverage added an average of 86.3 days each year from January 2018 through December 2020, as demonstrated at the Mississippi Canyon Block 20 Saratoga Platform site in the Gulf of Mexico.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Golfo de México , Mississippi , Petróleo/análisis , Estados Unidos , Contaminantes Químicos del Agua/análisis
2.
Int J Remote Sens ; 43(4): 1199-1225, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35769209

RESUMEN

Satellite image artefacts are features that appear in an image but not in the original imaged object and can negatively impact the interpretation of satellite data. Vertical artefacts are linear features oriented in the along-track direction of an image system and can present as either banding or striping; banding are features with a consistent width, and striping are features with inconsistent widths. This study used high-resolution data from DigitalGlobe's (now Maxar) WorldView-3 satellite collected at Lake Okeechobee, Florida (FL), on 30 August 2017. This study investigated the impact of vertical artefacts on both at-sensor radiance and a spectral index for an aquatic target as WorldView-3 was primarily designed as a land sensor. At-sensor radiance measured by six of WorldView-3's eight spectral bands exhibited banding, more specifically referred to as non-uniformity, at a width corresponding to the multispectral detector sub-arrays that comprise the WorldView-3 focal plane. At-sensor radiance measured by the remaining two spectral bands, red and near-infrared (NIR) #1, exhibited striping. Striping in these spectral bands can be attributed to their time delay integration (TDI) settings at the time of image acquisition, which were optimized for land. The impact of vertical striping on a spectral index leveraging the red, red edge, and NIR spectral bands-referred to here as the NIR maximum chlorophyll index (MCINIR)-was investigated. Temporally similar imagery from the European Space Agency's Sentinel-3 and Sentinel-2 satellites were used as baseline references of expected chlorophyll values across Lake Okeechobee as neither Sentinel-3 nor Sentinel-2 imagery showed striping. Striping was highly prominent in the MCINIR product generated using WorldView-3 imagery, as noise in the at-sensor radiance exceeded any signal of chlorophyll in the image. Adjusting the image acquisition parameters for future tasking of WorldView-3 or the functionally similar WorldView-2 satellite may alleviate these artefacts. To test this, an additional WorldView-3 image was acquired at Lake Okeechobee, FL, on 26 May 2021 in which the TDI settings and scan line rate were adjusted to improve the signal-to-noise ratio. While some evidence of non-uniformity remained, striping was no longer noticeable in the MCINIR product. Future image tasking over aquatic targets should employ these updated image acquisition parameters. Since the red and NIR #1 spectral bands are critical for inland and coastal water applications, archived images not collected using these updated settings may be limited in their potential for analysis of aquatic variables that require these two spectral bands to derive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...