Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Rev Camb Philos Soc ; 99(3): 928-949, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38226776

RESUMEN

The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g. soil nutrients) or biotic (e.g. dispersers) environment, which differentially affect species availability or performance. This, in turn, leads to shifts in the species composition of the plant community. However, there are many other PE feedback loops that potentially drive succession, each of which can be considered a model of succession. While plant-environment feedback loops in principle generate predictable successional trajectories, succession is generally observed to be highly variable. Factors contributing to this variability are the stochastic processes involved in feedback dynamics, such as individual mortality and seed dispersal, and extrinsic causes of succession, which are not affected by changes in the plant community but do affect species performance or availability. Both can lead to variation in the identity of dominant species within communities. This, in turn, leads to further contingencies if these species differ in their effect on their environment (priority effects). Predictability and variability are thus intrinsically linked features of ecological succession. We present a new conceptual framework of ecological succession that integrates the propositions discussed above. This framework defines seven general causes: landscape context, disturbance and land-use, biotic factors, abiotic factors, species availability, species performance, and the plant community. When involved in a feedback loop, these general causes drive succession and when not, they are extrinsic causes that create variability in successional trajectories and dynamics. The proposed framework provides a guide for linking these general causes into causal pathways that represent specific models of succession. Our framework represents a systematic approach to identifying the main feedback processes and causes of variation at different successional stages. It can be used for systematic comparisons among study sites and along environmental gradients, to conceptualise studies, and to guide the formulation of research questions and design of field studies. Mapping an extensive field study onto our conceptual framework revealed that the pathways representing the study's empirical outcomes and conceptual model had important differences, underlining the need to move beyond the conceptual models that currently dominate in specific fields and to find ways to examine the importance of and interactions among alternative causal pathways of succession. To further this aim, we argue for integrating long-term studies across environmental and anthropogenic gradients, combined with controlled experiments and dynamic modelling.


Asunto(s)
Ecosistema , Plantas , Modelos Biológicos , Desarrollo de la Planta/fisiología
2.
Nature ; 615(7950): 100-104, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792827

RESUMEN

Tropical tree diversity increases with rainfall1,2. Direct physiological effects of moisture availability and indirect effects mediated by biotic interactions are hypothesized to contribute to this pantropical increase in diversity with rainfall2-6. Previous studies have demonstrated direct physiological effects of variation in moisture availability on tree survival and diversity5,7-10, but the indirect effects of variation in moisture availability on diversity mediated by biotic interactions have not been shown11. Here we evaluate the relationships between interannual variation in moisture availability, the strength of density-dependent interactions, and seedling diversity in central Panama. Diversity increased with soil moisture over the first year of life across 20 annual cohorts. These first-year changes in diversity persisted for at least 15 years. Differential survival of moisture-sensitive species did not contribute to the observed changes in diversity. Rather, negative density-dependent interactions among conspecifics were stronger and increased diversity in wetter years. This suggests that moisture availability enhances diversity indirectly through moisture-sensitive, density-dependent conspecific interactions. Pathogens and phytophagous insects mediate interactions among seedlings in tropical forests12-18, and many of these plant enemies are themselves moisture-sensitive19-27. Changes in moisture availability caused by climate change and habitat degradation may alter these interactions and tropical tree diversity.


Asunto(s)
Biodiversidad , Humedad , Lluvia , Árboles , Clima Tropical , Bosques , Insectos , Panamá , Plantones/fisiología , Árboles/clasificación , Árboles/fisiología , Animales
3.
Sci Adv ; 8(26): eabn1767, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776785

RESUMEN

Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained.

4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845017

RESUMEN

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Modelos Biológicos , Clima Tropical
5.
Nat Ecol Evol ; 3(6): 928-934, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31011177

RESUMEN

Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mechanisms may vary across forest types, but analyses across broad spatial scales are lacking. Here, we analyse forest recovery using 1,403 plots that differ in age since agricultural abandonment from 50 sites across the Neotropics. We analyse changes in community composition using species-specific stem wood density (WD), which is a key trait for plant growth, survival and forest carbon storage. In wet forest, succession proceeds from low towards high community WD (acquisitive towards conservative trait values), in line with standard successional theory. However, in dry forest, succession proceeds from high towards low community WD (conservative towards acquisitive trait values), probably because high WD reflects drought tolerance in harsh early successional environments. Dry season intensity drives WD recovery by influencing the start and trajectory of succession, resulting in convergence of the community WD over time as vegetation cover builds up. These ecological insights can be used to improve species selection for reforestation. Reforestation species selected to establish a first protective canopy layer should, among other criteria, ideally have a similar WD to the early successional communities that dominate under the prevailing macroclimatic conditions.


Asunto(s)
Clima Tropical , Madera , Ecología , Bosques , Árboles
6.
Sci Adv ; 5(3): eaau3114, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30854424

RESUMEN

Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Clima Tropical , Conservación de los Recursos Naturales , Geografía
7.
Nat Ecol Evol ; 2(7): 1104-1111, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29807995

RESUMEN

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.


Asunto(s)
Fabaceae/crecimiento & desarrollo , Bosques , Lluvia , Árboles/crecimiento & desarrollo , América Central , Densidad de Población , Puerto Rico , América del Sur
8.
Ecol Lett ; 19(9): 1071-80, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27346439

RESUMEN

Multiple niche-based processes including conspecific negative density dependence (CNDD) determine plant regeneration and community structure. We ask how interspecific and intraspecific density-dependent interactions relate to plant life histories and associated functional traits. Using hierarchical models, we analysed how such interactions affected first-year survival of seedling recruits of 175 species in a tropical forest, and how species abundances and functional traits are related to interspecific variation in density-dependent effects. Conspecific seedling neighbour effects prevailed over the effects of larger conspecific and all heterospecific neighbours. Tolerance of seedling CNDD enhanced recruit survival and subsequent abundance, all of which were greater among larger seeded, slow-growing and well-defended species. Niche differentiation along the growth-survival trade-off and tolerance of seedling CNDD strongly correlated with regeneration success, with manifest consequences for community structure. The ability of larger seeded species to better tolerate CNDD suggests a novel mechanism for CNDD to contribute to seed-size variation and promote species coexistence through a tolerance-fecundity trade-off.


Asunto(s)
Biodiversidad , Bosque Lluvioso , Semillas/fisiología , Árboles/fisiología , Modelos Biológicos , Panamá , Dinámica Poblacional , Especificidad de la Especie , Árboles/crecimiento & desarrollo , Clima Tropical
9.
Proc Natl Acad Sci U S A ; 112(26): 8013-8, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26080411

RESUMEN

Although forest succession has traditionally been approached as a deterministic process, successional trajectories of vegetation change vary widely, even among nearby stands with similar environmental conditions and disturbance histories. Here, we provide the first attempt, to our knowledge, to quantify predictability and uncertainty during succession based on the most extensive long-term datasets ever assembled for Neotropical forests. We develop a novel approach that integrates deterministic and stochastic components into different candidate models describing the dynamical interactions among three widely used and interrelated forest attributes--stem density, basal area, and species density. Within each of the seven study sites, successional trajectories were highly idiosyncratic, even when controlling for prior land use, environment, and initial conditions in these attributes. Plot factors were far more important than stand age in explaining successional trajectories. For each site, the best-fit model was able to capture the complete set of time series in certain attributes only when both the deterministic and stochastic components were set to similar magnitudes. Surprisingly, predictability of stem density, basal area, and species density did not show consistent trends across attributes, study sites, or land use history, and was independent of plot size and time series length. The model developed here represents the best approach, to date, for characterizing autogenic successional dynamics and demonstrates the low predictability of successional trajectories. These high levels of uncertainty suggest that the impacts of allogenic factors on rates of change during tropical forest succession are far more pervasive than previously thought, challenging the way ecologists view and investigate forest regeneration.


Asunto(s)
Ecosistema , Bosques , Clima Tropical , Incertidumbre , Procesos Estocásticos
10.
Nat Commun ; 5: 5102, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25283495

RESUMEN

For evaluating climate change impacts on biodiversity, extensive experiments are urgently needed to complement popular non-mechanistic models which map future ecosystem properties onto their current climatic niche. Here, we experimentally test the main prediction of these models by means of a novel multi-site approach. We implement rainfall manipulations--irrigation and drought--to dryland plant communities situated along a steep climatic gradient in a global biodiversity hotspot containing many wild progenitors of crops. Despite the large extent of our study, spanning nine plant generations and many species, very few differences between treatments were observed in the vegetation response variables: biomass, species composition, species richness and density. The lack of a clear drought effect challenges studies classifying dryland ecosystems as most vulnerable to global change. We attribute this resistance to the tremendous temporal and spatial heterogeneity under which the plants have evolved, concluding that this should be accounted for when predicting future biodiversity change.


Asunto(s)
Clima , Sequías , Ecosistema , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Biodiversidad , Biomasa , Cambio Climático , Geografía , Medio Oriente , Lluvia , Suelo , Factores de Tiempo
11.
Ecology ; 95(4): 940-51, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24933813

RESUMEN

A complex set of interactions among neighbors influences plant performance and community structure. Understanding their joint operation requires extensive information on species characteristics and individual performance. We evaluated first-year survival of 35719 tropical forest seedlings of 222 species and 15 annual cohorts relative to the density of conspecific and heterospecific neighbors and the phylogenetic similarity of heterospecific neighbors. Neighbors were from two size classes, and size asymmetric interactions provided insight into likely mechanisms. Large heterospecific and conspecific neighbors reduced seedling survival equally, suggesting resource competition rather than host-specific enemies as a mechanism. In contrast, much stronger negative conspecific effects were associated with seedling neighbors capable of limited resource uptake, suggesting shared pests rather than competition as the mechanism. Survival improved, however, near phylogenetically similar heterospecific neighbors, suggesting habitat associations shared among closely related species affect spatial patterns of performance. Improved performance near phylogenetically similar neighbors is an emerging pattern in the handful of similar studies.


Asunto(s)
Filogenia , Plantones/genética , Plantones/fisiología , Árboles/genética , Árboles/fisiología , Biodiversidad , Biomasa , Filogeografía , Densidad de Población , Especificidad de la Especie , Clima Tropical
12.
PLoS One ; 10(4): e0123741, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25919023

RESUMEN

Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters.


Asunto(s)
Adaptación Biológica , Monitoreo del Ambiente/métodos , Árboles/clasificación , Árboles/fisiología , Sequías , Bosques , Luz , México , Lluvia , Clima Tropical , Agua
13.
Ecology ; 94(6): 1211-6, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23923479

RESUMEN

We tested whether and how functional composition changes with succession in dry deciduous and wet evergreen forests of Mexico. We hypothesized that compositional changes during succession in dry forest were mainly determined by increasing water availability leading to community functional changes from conservative to acquisitive strategies, and in wet forest by decreasing light availability leading to changes from acquisitive to conservative strategies. Research was carried out in 15 dry secondary forest plots (5-63 years after abandonment) and 17 wet secondary forest plots (< 1-25 years after abandonment). Community-level functional traits were represented by community-weighted means based on 11 functional traits measured on 132 species. Successional changes in functional composition are more marked in dry forest than in wet forest and largely characterized by different traits. During dry forest succession, conservative traits related to drought tolerance and drought avoidance decreased, as predicted. Unexpectedly acquisitive leaf traits also decreased, whereas seed size and dependence on biotic dispersal increased. In wet forest succession, functional composition changed from acquisitive to conservative leaf traits, suggesting light availability as the main driver of changes. Distinct suites of traits shape functional composition changes in dry and wet forest succession, responding to different environmental filters.


Asunto(s)
Ecosistema , Lluvia , Árboles/fisiología , Clima Tropical , Monitoreo del Ambiente/métodos , México
14.
PLoS One ; 7(2): e30506, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363443

RESUMEN

Biodiversity conservation and ecosystem-service provision will increasingly depend on the existence of secondary vegetation. Our success in achieving these goals will be determined by our ability to accurately estimate the structure and diversity of such communities at broad geographic scales. We examined whether the texture (the spatial variation of the image elements) of very high-resolution satellite imagery can be used for this purpose. In 14 fallows of different ages and one mature forest stand in a seasonally dry tropical forest landscape, we estimated basal area, canopy cover, stem density, species richness, Shannon index, Simpson index, and canopy height. The first six attributes were also estimated for a subset comprising the tallest plants. We calculated 40 texture variables based on the red and the near infrared bands, and EVI and NDVI, and selected the best-fit linear models describing each vegetation attribute based on them. Basal area (R(2) = 0.93), vegetation height and cover (0.89), species richness (0.87), and stand age (0.85) were the best-described attributes by two-variable models. Cross validation showed that these models had a high predictive power, and most estimated vegetation attributes were highly accurate. The success of this simple method (a single image was used and the models were linear and included very few variables) rests on the principle that image texture reflects the internal heterogeneity of successional vegetation at the proper scale. The vegetation attributes best predicted by texture are relevant in the face of two of the gravest threats to biosphere integrity: climate change and biodiversity loss. By providing reliable basal area and fallow-age estimates, image-texture analysis allows for the assessment of carbon sequestration and diversity loss rates. New and exciting research avenues open by simplifying the analysis of the extent and complexity of successional vegetation through the spatial variation of its spectral information.


Asunto(s)
Desecación , Procesamiento de Imagen Asistido por Computador , Comunicaciones por Satélite , Árboles/fisiología , Clima Tropical , Biodiversidad , Modelos Lineales , México , Modelos Biológicos , Estadísticas no Paramétricas
15.
Ecology ; 91(2): 386-98, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20392004

RESUMEN

Mechanistic models of community assembly state that biotic and abiotic filters constrain species establishment through selection on their functional traits. Predicting this assembly process is hampered because few studies directly incorporate environmental measurements and scale up from species to community level and because the functional traits' significance is environment dependent. We analyzed community assembly by measuring structure, environmental conditions, and species traits of secondary forests in a species-rich tropical system. We found, as hypothesized, that community structure shaped the local environment and that strong relationships existed between this environment and the traits of the most successful species of the regeneration communities. Path and multivariate analyses showed that temperature and leaf traits that regulate it were the most important factors of community differentiation. Comparisons between the trait composition of the forest's regeneration, juvenile, and adult communities showed a consistent community assembly pattern. These results allowed us to identify the major functional traits and environmental factors involved in the assembly of dry-forest communities and demonstrate that environmental filtering is a predictable and fundamental process of community assembly, even in a complex system such as a tropical forest.


Asunto(s)
Biodiversidad , Ambiente , Clima Tropical , Animales , México , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...